·

为什么可能没有体积的量子所组成的物质却有体积?

发布时间:2024-11-29 09:38:29阅读量:209
转载请注明来源

当你测量和观察周围的宇宙时,有一件事是可以肯定的:你看到、触摸到并以其他方式与之互动的物理对象都占据了一定的空间体积。无论是固体、液体、气体还是物质的任何其他形态,它都需要消耗能量来减少任何有形物质所占的体积。

然而,看似矛盾的是,作为物质的基本成分,标准模型的粒子却根本没有可测量的体积;它们只是点粒子。那么,由无体积实体组成的物质如何占据空间,创造出我们所观察到的世界和宇宙呢?

让我们从我们熟悉的事物开始,一步步分解,直到我们深入到支撑我们存在的量子规则。最后,我们可以从那里开始逐步向上。

上图显示了对应于电磁波谱各个部分的尺寸、波长和温度/能量尺度。你必须使用更高的能量和更短的波长来探测最小的尺度。紫外线足以使原子电离,但随着宇宙的膨胀,光会系统地转移到更低的温度和更长的波长。

如果你想了解体积,那么你必须了解我们测量物体大小的方式。确定宏观实体大小的方式通常是将其与已知大小的参考标准进行比较,例如尺子或其他测量棒。或者测量弹簧(或类似弹簧的物体)因该物体而位移的力、测量光穿过物体跨度所需的传播时间,甚至通过用特定波长的粒子或光子撞击物体的实验反馈来进行确定。正如光具有由其能量定义的量子力学波长一样,物质粒子也具有等效波长——也就是它的德布罗意波长。

当我们分解物质本身时,我们会发现我们所熟悉的一切实际上都是由更小的成分构成的。例如,人类可以分解成各个器官,而器官又由被称为细胞的单个单位构成。一个成年人体内总共可能有 80 到 100 万亿个细胞,其中只有大约 4 万亿个细胞构成了您通常所认为的身体,包括您的肌肉骨骼系统、结缔组织、循环系统和所有重要器官。另外大约 40 万亿个是血细胞,而您体内有一半的细胞根本没有遗传物质。相反,它们是由单细胞生物(例如主要生活在肠道中的细菌)构成的;从某种角度来看,您的一半细胞甚至不是您!

虽然人类是由细胞构成的,但从更基本的层面上讲,我们是由原子构成的。总的来说,人体内有近 10²⁸ 个原子,按数量计算主要是氢,但按质量计算主要是氧和碳。

细胞本身相对较小,通常只有约 100 微米左右,通常需要显微镜才能单独分辨。然而,细胞根本不是基本的物质单位,而是可以进一步分解成更小的组成部分。更复杂的细胞含有细胞器——执行特定生物功能的细胞成分。这些成分中的每一个又由分子组成,分子的大小从纳米级开始;单个 DNA 分子虽然非常细,但伸直后比人的手指还长!

而分子又由原子组成,原子的直径大约只有一埃,通常具有球对称性,在三个维度上具有相同的尺寸。在 19 世纪的很长一段时间里,人们都认为原子是基本粒子;原子这个名字本身就意味着“无法切割”。但后来的实验表明,原子本身是由更小的成分组成的,包括电子和原子核。即使在今天,电子也无法分解成更小的成分,但原子核毕竟具有有限的尺寸,它们通常只有几飞米的直径,存在于比原子本身小约 100,000 倍的距离尺度上。

虽然从体积上看,原子大部分是空的,主要由电子云组成,但致密的原子核只占原子体积的 10¹⁵ 分之一,却包含原子质量的 ~99.95%。与局限于原子电子的跃迁相比,原子核内部成分之间的反应可以更精确,在更短的时间尺度上发生,并且能量也不同。

但原子核也不是基本粒子,它们是由更小的实体组成的。每个原子核由单个质子或质子和中子的混合物组成,单个质子(或中子)的直径经测量在 0.84 到 0.88 飞米之间。质子和中子本身可以进一步分解为夸克和胶子。最后,至少根据目前最好的实验和观察结果,我们终于知道了构成我们日常生活中接触的大部分正常物质的基本实体:电子、胶子和夸克。

涉及粒子对撞机的高能物理实验对这些基本粒子的大小施加了最严格的限制。得益于欧洲核子研究中心的大型强子对撞机,我们可以明确地说,如果这些粒子中的任何一个确实具有有限的尺寸,或由更小的成分组成,我们最强大的加速器和对撞机也无法将它们分解开来。它们的物理尺寸必须小于约 100 泽米,即 10^-19 米。

不知何故,构成我们所接触的一切事物的基本成分根本没有可测量的尺寸,表现为真正无量纲的点粒子,但它们结合在一起,却产生了我们在所有尺度上发现的全套实体:质子和中子、原子核、原子、分子、细胞成分、细胞、器官和生物。

从宏观尺度到亚原子尺度,基本粒子的尺寸在确定复合结构的尺寸方面只起到很小的作用。这些构成块是否是真正的基本粒子或点状粒子仍不得而知,但我们确实了解宇宙,从大的宇宙尺度到微小的亚原子尺度。夸克和胶子的尺度是我们探索自然的极限。

那么这是如何实现的呢?点状粒子(可能尺寸无限小的粒子)如何结合在一起形成具有正的、有限的、非零尺寸的物理对象?

这有三个方面,这三个方面都是理解我们周围的宇宙所必需的。

首先,存在一条量子规则——泡利不相容原理。它阻止任何两个特定类型的相同量子粒子占据相同的量子态。粒子有两种,费米子和玻色子,虽然对于在同一物理位置可以占据相同量子态的相同玻色子数量没有限制,但泡利不相容原理适用于所有费米子。鉴于每种夸克和每个电子都是费米子,这条规则甚至排除了无限小的粒子在同一空间体积中共存。仅基于这条规则,你就可以看到多个粒子,即使它们本身没有“大小”,也需要彼此相隔有限的距离。

该图显示了标准模型的结构(与基于 4×4 粒子正方形的更熟悉的图像相比,它更完整、更少误导地显示了关键关系和模式)。具体来说,该图描绘了标准模型中的所有粒子(包括它们的字母名称、质量、自旋、手性、电荷以及与规范玻色子的相互作用:即强力和电弱力)。它还描绘了希格斯玻色子的作用和电弱对称性破坏的结构,表明希格斯真空期望值如何破坏电弱对称性以及其余粒子的性质如何因此而改变。但中微子的质量仍未得到解释。

第二个方面是这些粒子具有固有的基本属性,这些属性包括电荷、弱同位旋和弱超电荷以及色荷等。具有电荷的费米子粒子(受泡利不相容原理影响的粒子)将受到电磁力,与光子耦合。具有弱同位旋和弱超电荷的费米子粒子会受到弱核力,与 W 和 Z 玻色子耦合。而具有色荷的费米子粒子会受到强核力,与胶子耦合。

事实证明,夸克和电子(以及电子的两个较重的基本表亲,即介子和τ粒子)都带有电荷,这意味着它们都经历了电磁相互作用。在电磁学中,同性电荷(++ 或 - -)排斥,而异性电荷(+- 或 - +)吸引,物体越接近,力就越强。所有夸克都具有色荷,这意味着它们都经历了强核力。强核力总是具有吸引力,但表现方式不太直观,在粒子间距非常小的情况下,强力会变为零,但两个带色荷的物体之间的距离越远,强力就会增强。如果两个复合物体总体上是色中性的,但由具有色荷的实体(如质子和中子)组成,它们会表现出所谓的残余强力,这种力会吸引附近带有色荷成分的物体,但随着它们之间距离的增加,这种力会很快降至零。

泡利不相容原理阻止两个费米子在同一个量子系统中以相同的量子态共存。然而,它只适用于费米子,如夸克和轻子。它不适用于玻色子,因此,可以在同一量子态中共存的相同光子的数量没有限制。这就是为什么含有费米子的恒星残骸,如白矮星和中子星,可以抵御引力坍缩,因为泡利不相容原理限制了有限数量的费米子可以占据的体积。

同时,所有基本费米子都具有某种类型的弱电荷(同位旋或超电荷),但考虑物体的大小时可以安全地忽略这种力。

最后,决定宇宙中物体大小的第三个因素是宇宙中所有费米子(和一些玻色子)固有的另一个基本量子属性——质量。如果一个物体没有质量,即其质量为零,那么它就不能保持静止,而是必须始终保持运动,而且必须以宇宙中允许的最快速度——光速来运动。光子没有质量,胶子没有质量,引力波也没有质量。它们都可以携带能量,但没有固有质量,因此,它们总是以允许的最大速度运动。

值得庆幸的是,宇宙中有许多实体确实具有质量,包括所有夸克、电子和电子的(较重的)近亲:μ 子和 τ 粒子。电子是极轻的粒子,而夸克的重量范围从“比电子稍重”(上下夸克)到“已知最重的基本粒子”(顶夸克)。拥有质量意味着粒子的移动速度低于光速,甚至能让它们在适当的条件下静止下来。如果没有夸克和电子的巨大性质,以及赋予这些粒子质量的希格斯场,这些物体(如质子、原子核、原子)以及随后由它们构建的一切将完全不可能形成束缚态!

强力之所以能发挥作用,是因为存在“色荷”和胶子交换,强力是将原子核结合在一起的力。这种力由大量胶子的交换控制,速度受光速限制;从黑洞视界内部来看,这样的力不可能阻止任何外层粒子到达中心奇点。

牢记这三个方面:

· 没有两个相同的费米子可以在同一位置占据相同的量子态,

· 粒子带电荷,这些电荷决定了它们所受力的类型和大小,

· 有些粒子具有有限的、正的、非零的静止质量,

我们最终可以开始用无限小尺寸的组成部分构建特定的、有限尺寸的物体。

让我们从质子和中子开始吧!它们是由夸克和胶子组成的实体。每个质子和中子内的夸克都带有电荷和色荷。相似夸克(上-上或下-下)之间的电力会引起排斥,而不同夸克(上-下-上)之间的电力会引起吸引力。当夸克彼此非常接近时,强力可以忽略不计,这意味着如果它们彼此靠近,它们会简单地“滑过”彼此。然而,它们相距越远,它们之间的吸引力就越大,从而阻止它们相距太远。事实上,一旦质子或中子内的夸克彼此达到临界分离距离,强力就会使它们“弹回”彼此,就像拉长的弹簧一样。

由于质子和中子中的夸克具有非零质量,这些夸克必须始终以低于光速的速度移动,从而使它们能够在这种复合结构中加速、减速,甚至(暂时)静止。夸克之间的强力和电磁力结合起来,产生了有限大小的质子和中子——每个略小于 1 飞米。而由于强力的作用,夸克之间的结合能最终成为质子和中子总质量的大部分。质子/中子的质量只有约 1% 来自其内部的夸克,而其余约 99% 来自这种结合能。

单个质子和中子是无色实体:这是当今宇宙中唯一允许存在的夸克态。虽然强力是由无质量(胶子)粒子介导的,但单个束缚态之间存在的唯一力是由介子引起的,介子本身都非常大,严重限制了强力的范围。

原子核稍微简单一些,原子核的体积大约等于其组成质子和中子的总体积。但对于原子本身(电子围绕的原子核)来说,事情就变得有点棘手了。电磁力现在是决定原子大小的因素,因为带正电、质量大的原子核锚定原子,而带负电、质量小得多的电子围绕原子核旋转。由于它们彼此带有相反的电荷,原子核和电子总是相互吸引,但由于每个质子的质量是每个电子的 1836 倍,所以电子会围绕每个原子核快速移动。毫不奇怪,最简单的原子是氢原子,其中只有一个电子围绕一个孤立的质子旋转,由电磁力结合在一起。

现在,记住泡利不相容原理:没有两个相同的费米子可以在同一位置占据相同的量子态。氢原子很小,因为它的电子处于允许的最低能量状态,即基态,并且只有一个电子。然而,较重的原子核(如碳、氧、磷或铁)在其原子核中含有更多质子,因此需要其中有更多的电子。如果较低能量的量子态都充满电子,那么后续电子必须占据更高能量的状态,从而导致更大的电子轨道(平均而言)和占据更大体积的“更蓬松”的原子。每个碳原子有六个电子,氧原子有八个,磷原子有十五个,铁原子每个有二十六个电子。

原子核心的质子越多,原子外围的电子就越多。电子越多,必须占据的能态数量就越多。原子中最高能电子的能态越高,原子必须占据的物理体积就越大。氢原子的直径可能只有约 1 埃,但较重的原子可能大得多,直径可达数埃。

氢原子中不同状态对应的能级和电子波函数,尽管所有原子的配置都极为相似。能级以普朗克常数的倍数量化,但轨道和原子的大小由基态能量和电子质量决定。根据泡利不相容原理,只有两个电子(一个自旋向上,一个自旋向下)可以占据每个能级,而其他电子必须占据更高、体积更大的轨道。当你从较高能级降至较低能级时,如果你只打算发射一个光子,你必须改变你所处的轨道类型,否则你将违反某些无法打破的守恒定律。

尽管原子经常会聚集形成更大的结构,但大多数物体所占的体积主要可以通过了解物体组成原子本身所占的体积来解释。原因很简单:泡利不相容原理指出,没有两个相同的费米子可以占据相同的量子态,它阻止相邻原子的电子侵占另一个原子所占的体积。以人类为例,我们主要由碳、氧、氢和氮组成,其余大部分由磷、钙、铁和其他中等重元素组成。考虑到一个典型的成年人体内大约有 ~10²⁸ 个原子,如果你假设一个典型的原子的边长约为 ~2 埃,那么对于一个成年人来说,这相当于大约 80 升的体积:大约相当于一个体重 ~180 磅(80 公斤)的成年人的体型。

当然,在特殊情况下,这些规则可能会略有不同。例如,在白矮星中,许多原子聚集在一个位置,以至于围绕原子核运行的电子实际上被周围的压缩引力压垮,迫使它们占据比正常情况小得多的体积。在μ子原子中,原子的电子被电子的较重表亲μ子取代,原子的直径仅为电子原子直径的 1/200,因为μ子的质量大约是电子的 200 倍。但对于构成我们熟悉经验的传统物质来说,这是以下因素的累积效应:

· 电子的质量较低但不为零,

· 电子的强负电荷,

· 以及质量巨大、带正电的原子核,

· 结合泡利不相容原理,

正是这些因素决定了原子以及地球上所有物体所占据的体积。从基本的量子实体一直到我们生活的宏观世界,这就是从根本上来说微小的物体,甚至可能是点状物体最终占据如此大空间的原因!

--------------------------------------------

本文转载自公众号一座宁静的书屋

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

创意总会有枯竭的那天,但创新不会,唯有创新才有可能源源不断、永无止境

根据网上查到的资料,创意这个词是创新的子集:创意是创造意识或创新意识的简称,亦作“剙意”。它是指对现实存在事物的理解以及认知,所衍生出的一种新的抽象思维和行为潜能。但是我认为从实践中讲,更准确地,应该这样定义创意。假设创新是一个集合$A$,那么创意就是任意一个单射$f: B\rightarrow A$且满足$f(B)\subsetneqq A$。By abuse of notation,我们直接将其记作$B$。显然,此定义推广了创意的文字定义。怎么理解这个定义呢?首先两个定义的共同之处是——创意小,创新大。在生产实践中,创意的例子比比皆是,比如说一个商品的包装、一个产品的界面和logo、相同食材的不同煮法等等。这些创意有些是有限的,而有些看似无限其实也是有其上确界。我们可以将这个说法写成一个命题。命题/定义1. 任意一个创意$B$,都存在一个最小实数$M\in\mathbb{R}_{\geq0}$使得$\|B\| \leq M$。此数被称为创意$B$的上确界,并记作$\sup(B)$。为什么说创意是有限的?从生产实践中考虑,绝大多数有创意的产品,经过激烈的商业竞争,在不断的 产生新创意 ...

回顾经典 - 使命召唤5僵尸模式mod 海绵宝宝

使命召唤5虽然是2008年发行的游戏,却是COD系列中最为经典的一个。可以说它是很多玩家的童年回忆,相较于COD的其他版本,COD5可以说拥有最强大的MOD功能,啥都能做成被做成COD5的MOD,即便是COD新版本的僵尸模式也能被做成MOD回到COD5中。得益于此,COD5的僵尸模式至今仍保持着一定热度。曾经COD5的僵尸模式非常火爆,很多MOD如雨后春笋一般涌现,其中不乏一些优秀有趣的MOD,而我今天要介绍的海绵宝宝MOD便是其中之一。这张地图的面积挺大,可玩区域包括:比奇堡小镇水母田音乐会区域高菲高伯冰淇淋船蟹堡王餐厅海绵宝宝的家章鱼哥的房子珊迪的圆顶树屋这种地图包含紧张的跑酷场景,并且有多种饮料,还有特殊的武器。话不多说,直接上图。更多细节介绍、视频,以及下载地址见:Spongebob, Battle for Bikini Bottom [V1.1] LINK UPSpongebob, Battle for Bikini Bottom [V1.1]

(✔已修复)弦圈APP下载附件功能存在问题,目前暂时无法修复。如若需要下载附件,请先用Web端

今天有粉丝反馈,弦圈APP里下载的附件并不能打开。接着我马上打开APP测试,发现文件确实是下载了,但是却找不到下载的文件,这也是当初测试的一个疏漏😢。不过令人沮丧的是,我目前找不到解决这个问题的办法😭。目前这个问题的原因已经查明,就是下载路径的问题。文件下载成功后所放的位置file:///data/user/0/com.sinering.manitori/files,在手机里是打不开的,里面的文件对于用户而言不可见。用户下载的文件相当于存到APP的数据里了,我目前也不清楚如何在手机访问这些文件,开发的时候可以通过Android Studio查看,但是这是真机。由于这是我第一次写APP,自己的技术水平有限,而手机端APP与Web端相比,同样的功能没那么好实现,复杂很多。目前这个问题,我暂时找不到解决办法,其实就是一行代码有问题需要修改。import { File, Paths } from "expo-file-system/next"; const new_file = new File(Paths.document, new_filename);就是上面这行代码里的Paths.do ...

如何创建你的第一个React.js+Vite项目?

最近弦圈APP第一个正式版上线了,在下载弦圈APP这个页面中,GitHub Page的下载页面就是直接用React.js+Vite写的:https://ricciflows.github.io/xianquan-app-download/。那么,对于新人小白而言,如何创建第一个React.js+Vite项目,并写出这样一个简单的页面呢?本文将手把手教你如何实现。首先,你需要安装并配置好node.js环境,具体见Node.js安装与更新教程 - Windows版,并确保node版本是18+或者20+。接着win+R并输入cmd打开控制台(如果你想要选择项目的位置,如D:\Reactjs,则分别输入D:和cd Reactjs)然后输入命令npm create vite@latest如果输出以下结果,则输入y然后按enter键接着输入项目名称,如vite-test按方向键↓,选择React,然后enter接着,根据自己的需要选择。这里我们选择第一个然后根据提示,分别输入三条命令。第一个命令是指进入项目文件vite-test,第二个命令则是安装所有npm依赖,第三个命令则是运行测试模式。注:输 ...

Node.js安装与更新教程 - Windows版

Node.js环境是前端开发的必备环境,无论哪一个前端框架都需要用到node.js,本文将会教你如何安装配置node.js环境。如果你已经安装过node.js,但是想更新,那你也只需要按照安装的步骤直接覆盖原目录即可。首先,打开node.js的官网https://nodejs.org/zh-cn,然后下载node.js的Windows安装包。注:无特别需求,直接安装LTS(long term support)版就可以了。如果觉得在官网下载速度太慢,可以选择镜像网站下载:https://mirrors.aliyun.com/nodejs-release/v22.14.0/?spm=a2c6h.25603864.0.0.4b507621PbOVxm。然后根据自己电脑的配置选择安装包,下载完后直接打开,选Next勾同意协议,然后选Next设置你的安装路径,然后选Next接下来,这里不用管直接选Next继续选Next,注:这里说的是某些npm库安装时需要从C/C++中编译出来,如果你想要能安装这些库,就勾选此项。现在直接选Install,开始安装等待安装完成(如果这时候弹出请求管理员权限,点是 ...

Flutter、Tauri、React Native、Android原生的四次开发经历,为何最后我选择了React Native?

Flutter、Tauri、React Native都是目前移动端流行的跨平台开发框架,并且他们还能胜任全平台开发。React Native是最早开源的跨平台框架,而Flutter紧跟其后,并且Flutter最近几年超越React Native成为当前世界上最流行的跨平台框架。Tauri则是最近几年诞生的新跨平台框架,跟其他框架显著不同的一点是,它允许你使用任何前端框架,即你能够自由使用整个Web生态进行跨平台开发。Flutter、Tauri、React Native、Android原生我都尝试过,接下来我说一下我分别使用他们的开发经历。首先,我第一个使用的跨平台框架是Tauri,当时Tauri V2.0已经发布,我看它能够使用Nuxt.js或者Next.js进行开发,觉得蛮不错的。毕竟我有两个网站,一个是Nuxt写的,另一个是Next写的,这样我就只需要在原有代码基础上修改一下就行了。于是很快我就栽跟头了,首先是Nuxt的桌面端应用,我在dev模式下,没有发现任何问题,$fetch请求也能正常发送。结果build以后,发现所有的请求都废了,全是404,将url改为完整url,结果就是 ...

中国当前的教育最缺少什么?

在我看来,目前国内教育最大的问题之一,就是不告诉学生这个社会残酷的真相,只会不断给学生灌输好好读书,以后勤奋工作才能出人头地、赚钱的错误观念。这导致大学里一个非常奇怪的现象,很多人明明没有赚钱的本事,却拿着父母赚的辛苦钱无所事事,在学校享受人生,俨然一副天堂的样子。因为到了大学,好好读书这个意念也随着高考结束而逐渐淡化,没有人再管你的学习,你只需要期末考试及格,干啥都可以,甚至不及格还能补考。然而殊不知这样的学生出来以后,大概率很快会被社会毒打。被当成螺丝钉是小事,最怕的是连当螺丝钉的资格都没有。目前国内教育的目的就是为了产生好的螺丝钉。但是讽刺的是,学校即便连螺丝钉都不能好好培养出来。因为学校教育与社会现实严重脱轨,以计算机编程类的课程为例,很多课里面的内容还停留在十几年前,完全没有与时俱进,也没考虑生产实际。这也意味着,在学校哪怕你认真上好每一节,学好所有的知识,也并不能在社会的竞争中脱颖而出,你必须自学加量,疯狂内卷,在自我内耗中度过。学校只是个没有感情的流水线工厂,只会机械性的给你灌输教材的内容,不会教你如何赚钱、如何社交、如何对待感情等等更加重要的问题,最后导致很多人遇到感情 ...

是否存在人类大脑永远无法理解的数学结构?

是否存在人类大脑永远无法理解的数学结构?答案是存在也不存在。这个问题重点在于“理解”这个词,怎么样才算是理解?本文中,我们就将理解分为直观理解和抽象理解吧。所谓直观理解,指的是能够通过五官直接感受到。基于这个定义,数学从线性代数中最基础的n维线性空间开始,就不是人脑能够直观理解的了,毕竟人脑只能理解四维以下的空间,即只能理解三维的空间,不能理解处在第四维度的时间。到目前为止,四维时空是否存在都还存在争议,因为并没有直接证据表明四维时空真实存在。因此,从物理世界来看,人脑从四维线性空间开始就无法直观理解了。抛开四维空间是否真实存在的物理争议,考虑纯粹数学上的定义,四维空间是存在的。那么有可能通过作图的方式来直观理解高维空间呢?不能。那些所谓画出四维及以上空间的图,其实是通过投影等方法实现降维,将高维空间的东西通过三维的形式表现出来,并不是真正的高维空间。既然存在那么多大脑无法理解的数学结构,这时数学就派上用场了。数学正是人类用于理解人脑无法直观理解的工具,因为人脑有个很强大的功能——抽象化,既然你无法想象、也无法理解,那干脆就将它抽象化为一个数学对象来研究,即抽象理解。人类对于高维空间的 ...

数学与物理公式可以精准简洁地描述自然现象,究竟是世界本就如此巧妙,还是科学家努力简化后的结果?

这个问题有点像数学究竟是人发明的,还是人发现的?每个人基于不同理念、哲学观,会有不同的答案。而如今这个问题,可以引申出几个类似的问题。世界的底层运行规律究竟是复杂的,还是简洁的?物理定律究竟是真理,还是人类为解释宇宙而创造的?(类似于数学是否人造?)数学定理或者物理定律是绝对真理吗?或者说存在绝对真理的数学定理或者物理定律吗?这些问题都涉及到一种哲学观,没有标准答案,只是你观念的不同。回到这个问题,我是持爱因斯坦的那种观点,认为宇宙能够由简洁而优美的数学所描述,因为宇宙的底层规律本身就是足够简单的,只是人类未曾发现。换句话说,这就有点像线性空间的基底一样,只需要几条简单的定律,就可以通过线性组合,不断复杂化,最终产生如今的宇宙。这里又涉及到一个问题,即这个线性空间到底是有限维的,还是无穷维的?不过基于世界本质的简单性,从审美角度出发,我更倾向于假设这个线性空间是有限维的。因此,从这个角度看,如果数学或物理公式不够简洁和美妙,那么其本身所蕴含的奥秘也就越浅显,并且距离世界的本质就更远,即引用高斯的话“距离神更远”。故而简洁的数学或物理公式,更多的是科学家们发现的结果,是自然的,而不是刻意 ...

国内曾经出现过很多的数学论坛,但是为什么如今大多数都访问不了了?

今天我在知乎宣传弦圈的时候,回答了一个问题有哪些数学论坛值得推荐?,结果发现有好几个回答里的数学网站已经访问不了了。这些回答里的几乎所有数学网站,我都未曾听说过(正如弦圈很多人不知道一样),这证明国内曾经也出现过很多数学论坛,有些或许曾经也辉煌过,但是最后都坚持不下去了。我做数学的时候,用的数学论坛基本上都是国外的MathStackExchange和Mathoverflow,知乎也很少用。可以说国内目前除了知乎,就没有高人气的数学论坛。毕竟本来纯数学就是一种非常小众的文化,而数学这种严肃的内容,也注定不会有高活跃、高互动的用户。因此可以看到很多国内的数学网站都已经不能访问了,有些还“活”着的,其实也是半死不活,空有用户量,但活跃度却低得可怜。而知乎的数学也早就变味了,彻底娱乐化了,真正有营养的内容已经没多少,真正有实力的大佬也相继退乎,回答都删得干干净净的。似乎中文互联网中已经没有太多数学文化的栖息之地了。国外虽然也好不到哪里去,但却跟国内天差地别,最大的MathStackExchange和Mathoverflow两个数学论坛,虽然也是不能盈利,纯粹靠捐赠维持生计,但是却能保持纯粹的数 ...

前端跨平台开发框架对比:Flutter vs Tauri vs React Native

传统移动端开发往往需要同时兼顾Android和IOS的开发,而桌面端开发又需要同时兼顾Windows、MacOS、Linux系统。如果你想要全平台覆盖,不仅意味着要同时维护多套完全不同的代码(极大提高了维护成本),并且代码和逻辑还可能不能复用,这意味着高昂的开发成本(极低开发效率),每个平台都得从零开始写。现在国内还多出个鸿蒙系统,这意味着你要同时开发和维护更多套代码,哪怕补贴钱,这成本也不是小企业能够负担得起的。于是,跨平台框架应运而生,Facebook开源的React Native,曾经是最流行的框架,不过近几年被Flutter超越。它不仅能让你使用React语言同时开发Android和IOS APP,甚至还能进行Windows桌面端开发。而谷歌开源的Flutter,是目前最流行的跨平台框架,略微领先React Native。它能让你使用dart语言开发移动端与桌面端应用。而Tauri则允许你使用任何前端框架进行全平台开发,不过也需要你懂得一些Rust语言。我们先从开发体验出发来对比这三个跨平台框架。首先,React Native能够让你完全用JSX语言来进行跨平台开发,这对于本身 ...

给Web开发者写的React Native简介,React Native与React的区别与对比(2)

本文我们继续之前的话题给Web开发者写的React Native简介,React Native与React的区别与对比(1),在上文中我们讲到在React Native想要写<p>或者<span>需要用Text组件。除了展示文本,还有一个很重要的东西就是展示图片。在React Native中你无法使用HTML的<img>,而要用React Native提供的Image组件。处理图片可以说是React Native中的一个难点,因为在React Native中无论是什么图片都需要你设置一个宽度和高度,见实例:import React from 'react'; import {Image} from 'react-native'; import {SafeAreaView, SafeAreaProvider} from 'react-native-safe-area-context'; const DisplayAnImage = () => ( <SafeAreaProvider> <SafeAreaView s ...

弦圈登录功能完成更新,之后只要登录一次便可长期保持登录

原标题:弦圈登录功能完成更新,之后只要登录一次便可长期保持登录。目前该功能仍在测试阶段不稳定,如果发现有登录后掉线问题,可以试试清空cookie。这几天,我对弦圈的登录功能进行了更新,换了目前最新的OAuth2技术,取代以前的session登录。基于OAuth2的登录功能有很多好处,首先第一个就是能够长时间的保持登录状态,现在大家上网,无论是哪个平台,你都会发现自己只要登录一次,哪怕过了很久再打开,仍然是登录状态。第二个好处就是,token是无状态的,因此会占用更少的服务器资源,这意味着弦圈负荷更小、访问更顺畅。旧登录功能基于session是有状态的,如果人多起来,服务器负荷直线上升,这或许也是之前卡的原因之一吧。由于我是第一次在Web端使用OAuth2实现登录功能,因此刚开始更新的时候,网站还是有很多bug。比如说最大的一个bug就是,关闭浏览器后重新打开,需要重新登录,这显然问题很大。而这个bug今天经过我整整一天的艰难调试,终于是修好了。别小看一个简单的登录功能,尤其是OAuth2,前后端实现真的挺复杂。最后虽然网站代码已经更新好了,但是用户浏览器里的cookie是不会因此自动删 ...

给Web开发者写的React Native简介,React Native与React的区别与对比(1)

React Native是React下的一个跨平台框架,能让你用熟悉的React JSX语法来进行跨平台开发。所谓的跨平台开发是如今的一种趋势,即用同一种语言来同时进行Web端、手机端安卓与IOS、桌面端Windows、MacOS、Linux的开发。这样不仅能极大的提高开发效率,同时大大增加了代码的可维护性,节省了大量的成本。然而React Native虽然带个React,用的也是JSX语言,却跟React有很多不一样的地方。因为React Native不仅面向网页端,还面向手机端APP,而React Native的代码会直接编译为native原生代码。在本文中,我将会列举说明几个React Native的不同之处。首先,在React Native中我们不能像React那样直接使用HTML语言,因为无论是Android还是IOS,都无法编译HTML语言。因此,我们需要使用React Native提供的组件。在React Native中,如果你想要写<div>,则需要换成<View>。View组件在Web端会被编译成<div>,而在Android和IO ...