·

Note on perfectoid spaces

发布时间:2024-04-26 21:18:04阅读量:1154
学术
转载请注明来源

In this section, we focus on Section 2 in [Sch], following [Hu], [Hu1], and [Hu2]. Moreover, we need to compare Huber's adic spaces with Berkovich's analytic spaces and Tate's rigid analytic spaces. Hence, we will briefly introduce the notion of Berkovich's analytic spaces in §1.3 and the notion of rigid analytic varieties in §1.4.

§1. Adic Spaces

Definition 1.1.  A morphism $f:X\rightarrow Y$ of adic spaces is adic if, for every $x\in X$, there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ of $f$-adic rings is adic.

§1.1. Morphisms of finite type.

The material can be seen in [SP] and [Hu1].

First, we review the definition of morphisms of schemes of finite type/presentation (see [SP], Definition 29.15.1, Lemma 29.15.2, and Definition 29.21.1, and Lemma 29.21.2).

Definition 1.2. Let $f:X\rightarrow Y$ be a morphism of schemes.

  1. We say that $f$ is locally of finite type if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite type.
  2. We say that $f$ is of finite type if it is quasi-compact and locally of finite type.
  3. We say that $f$ is locally of finite presentation if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.
  4. We say that $f$ is of finite presentation if it is quasi-compact, quasi-separated, and locally of finite presentation.

Compared with the above definition, we reach to the case of adic spaces.

Definition 1.3 ([Hu1, Definition 1.2.1]). Let $f:X\rightarrow Y$ be a morphism of adic spaces.

  1. We say that $f$ is locally of finite type if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type.
  2. We say that $f$ is of finite type if it is quasi-compact and locally of finite type.
  3. We say that $f$ is locally of finite presentation if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type and, if the topology of $\mathscr{O}_{Y}(V)$ is discrete, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.

Then $\{\textrm{morphisms locally of finite presentation}\}\subset\{\textrm{morphisms locally of finite type}\}\subset\{\textrm{adic}\newline\textrm{morphisms}\}$.

§1.2. Unramified, smooth, and étale morphisms.

For definitions of morphisms of finite type and finite presentation, see §1.1.

First, we review the notions of unramified, smooth, and étale ring maps (see [SP], 10.138, 10.148, and 10.150, and 10.151).

Definition 1.4. Let $R\rightarrow S$ be a ring map. We say $R\rightarrow S$ is formally smooth/formally unramified/formally étale or $S$ is formally smooth/formally unramified/formally étale over $R$ if for every solid commutative diagram

where $I\subset A$ is a square zero ideal, there exists at least one/at most one/a unique dotted map $S\rightarrow A$ making the diagram commute.

The definitions of smooth and étale ring maps make use of the naive cotangent complex, but we will simplify this.

Definition 1.5. Let $R\rightarrow S$ be a ring map.

  1. We say $R\rightarrow S$ is smooth/étale or $S$ is smooth/étale over $R$ if $R\rightarrow S$ is of finite presentation and formally smooth/formally étale.
  2. We say $R\rightarrow S$ is unramified or $S$ is unramified over $R$ if $R\rightarrow S$ is of finite type and formally unramified.

Compared with the definitions above, we reach to the case of adic spaces via changing some arrows.

Definition 1.6 ([Hu1, Definition 1.6.5]).

  1. A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale if $f$ is locally of finite type/locally of finite presentation/locally of finite presentation and if, for any affinoid ring $A$, any ideal $I\subset A^{\vartriangleright}$ with $I^{2}=0$, and any morphism ${\rm{Spa}}(A)\rightarrow Y$, the map ${\rm{Hom}}_{Y}({\rm{Spa}}(A),X)\rightarrow{\rm{Hom}}_{Y}({\rm{Spa}}(A/I),X)$ is injective/surjective/bijective.
  2. A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale at a point $x\in X$ if there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that $f|_{U}:U\rightarrow V$ is unramified/smooth/étale.

Note that the second statement of (i) above can be described as follows. For every solid commutative diagram in the following, there exist at most one/at least one/a unique one dotted map making the diagram commute.

§1.3. Berkovich’s analytic spaces.

We will introduce the notion of Berkovich's analytic spaces following [Ber] and [Ber1]. Berkovich's analytic spaces is one of the non-archimedean analogues of complex analytic spaces. The definition of analytic spaces in [Ber1] is more general than the definition in [Ber] (the analytic spaces in [Ber] corresponds to the good analytic spaces in [Ber1]). So we will make use of the definition in [Ber1].

§1.3.1 Underlying topological spaces.

First, we introduce some structures on topological spaces for further use (see [Ber1, §1, 1.1]). All compact, locally compact, and paracompact spaces are assumed to be Hausdorff.

Definition 1.7.

  1. A topological space is paracompact if it is Hausdorff and every open cover of it admits a locally finite refinement.
  2. A topological space $X$ is locally Hausdorff if every point $x\in X$ admits an open Hausdorff neighborhood.

Remark 1.8. Note that in [Tam], a paracompact space also requires that the locally finite refinement in (i) above is an open cover.

Let $X$ be a topological space and let $\tau$ be a collection of subsets of $X$ provided with the induced topology. We put $\tau|_{Y}:=\{V\in\tau;V\subset Y\}$ for any subset $Y\subset X$.

Definition 1.9. We say that the collection $\tau$ above is a quasi-net on $X$ if, for every point $x\in X$, there exist $V_{1},...,V_{n}\in\tau$ such that $x\in V_{1}\cap\cdot\cdot\cdot\cap V_{n}$ and the set $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ is a neighborhood of $x$, i.e. $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ contains an open set $U\subset X$ with $x\in U$. Furthermore, $\tau$ is said to be a {\rm{net on $X$}} if it is a quasi-net and, for any $U,V\in\tau$, $\tau|_{U\cap V}$ is a quasi-net on $U\cap V$.

Definition 1.10 ([Dug, p255]). Let $X$ be a topological space and $S\subset X$ be a subset. $S$ is said to be locally closed if every point $s\in S$ has a neighborhood $U$ such that $S\cap U$ is closed in $U$.

§1.3.2 The category of analytic spaces.

Throughout, we fix a nonarchimedean field $k$ whose valuation can be trivial. The category of $k$-affinoid spaces is dual to the category of $k$-affinoid algebras (see [Ber, §2.1]). The $k$-affinoid spaces associated with a $k$-affinoid algebra $\mathscr{A}$ is denoted by $X:=\mathscr{M}(\mathscr{A})$.

If for each nonarchimedean field $K$ over $k$, we are given a class $\Phi_{K}$ of $K$-affinoid spaces, the system $\Phi=\{\Phi_{K}\}$ is assumed to satisfy the following conditions:

(i) $\mathscr{M}(K)\in\Phi_{K}$.

(ii) $\Phi_{K}$ is stable under isomorphisms and direct products. In other words, for $X\in\Phi_{K}$, if $X'$ is a $K$-affinoid space with $X\cong X'$, then we have $X'\in\Phi_{K}$, and for $X,Y\in\Phi_{K}$, we have $X\times Y\in\Phi_{K}$.

(iii) If $\varphi:Y\rightarrow X$ is a finite morphism of $K$-affinoid spaces with $X\in\Phi_{K}$, then $Y\in\Phi_{K}$.

(iv) If $(V_{i})_{i\in I}$ is a finite affinoid covering of a $K$-affinoid space $X$ with $V_{i}\in\Phi_{K}$, then $X\in\Phi_{K}$.

(v) If $K\hookrightarrow L$ is an isometric embedding of nonarchimedean fields over $k$, then for any $X\in\Phi_{K}$, one has $X{\widehat{\otimes}_{K}L}\in\Phi_{L}$.

Definition 1.11. The class $\Phi_{K}$ is said to be dense if each point of each $X\in\Phi_{K}$ admits a fundamental system of affinoid neighborhoods $V\in\Phi_{K}$. The system $\Phi$ is said to be dense if all $\Phi_{K}$ are dense.

The affinoid spaces from $\Phi_{K}$ (resp. $\Phi$) and their affinoid algebras will be called $\Phi_{K}$-affinoid (resp. $\Phi$-affinoid).

From (ii) and (iii) above, we deduce that $\Phi_{K}$ is stable under fiber products. In other words, for $X,Y,Z\in\Phi_{K}$ with morphisms $X\rightarrow Z$ and $Y\rightarrow Z$, we have $X\times_{Z}Y\in\Phi_{K}$.

Let $X$ be a locally Hausdorff space and let $\tau$ be a net of compact subsets on $X$.

Definition 1.12. A $\Phi_{K}$-atlas $\mathscr{A}$ on $X$ with the net $\tau$ is a map that assigns, to each $U\in\tau$, a $\Phi_{K}$-affinoid algebra $\mathscr{A}_{U}$ together with a homeomorphism $U\xrightarrow{\sim}\mathscr{M}(\mathscr{A}_{U})$ and, to each pair $U,V\in\tau$ with $U\subset V$, a bounded homomorphism $\mathscr{A}_{V}\rightarrow\mathscr{A}_{U}$ of $\Phi_{K}$-affinoid algebras that identifies $(U,\mathscr{A}_{U})$ with an affinoid domain in $(V,\mathscr{A}_{V})$.

Definition 1.13. A triple $(X,\mathscr{A},\tau)$ of the above form is said to be a $\Phi_{K}$-analytic space.

§1.4. Rigid analytic varieties.

The notion of rigid analytic variety is also one of the nonarchimedean analogues of complex analytic space. It originated in John Tate's thesis, [Tat]. In this subsection, we briefly introduce it following [BGR] and [BS].

§1.4.1 $G$-topological spaces.

As a technical trick, we generalize the usual topology to the so-called Grothendieck topology, [SGA4]. Roughly speaking, a $G$-topological space is a set that admits a Grothendieck topology. We will first introduce Grothendieck topology following the definition in [BS], where the "Grothendieck topology" means the "Grothendieck pretopology" in [SGA4].

Definition 1.14. Let $\mathscr{C}$ be a (small) category. A Grothendieck topology $T$ consists of the category ${\rm{Cat}}(T)=\mathscr{C}$ and a set ${\rm{Cov}}(T)$ of families $(U_{i}\rightarrow U)_{i\in I}$ of morphisms in $\mathscr{C}$, called open coverings, such that the following axioms are satisfied:

  1. If $U'\rightarrow U$ is an isomorphism in $\mathscr{C}$, then the one-element family $(U'\rightarrow U)\in{\rm{Cov}}(T)$.
  2. If $(U_{i}\rightarrow U)_{i\in I}$ and $(V_{ij}\rightarrow U_{i})_{j\in I}$ are open coverings, then $(V_{ij}\rightarrow U)_{i,j\in I}\in{\rm{Cov}}(T)$.
  3. If $(U_{i}\rightarrow U)_{i\in I}$ is an open covering and $V\rightarrow U$ is a morphism in $\mathscr{C}$, then the fiber products $V\times_{U}U_{i}$ exist in $\mathscr{C}$ and $(V\times_{U}U_{i}\rightarrow V)_{i\in I}\in{\rm{Cov}}(T)$.

Remark 1.15. Note that this is slightly different to the definition in [Poon], which requires that a Grothendieck topology consists of the set ${\rm{Cov}}(T)$ only. Moreover, the pair $(\mathscr{C},T)$ is usually called a site. However, to suite our needs in rigid geometry, we stick with the terminology in [BS].

We specialize the definition above to the case that is more suited to our needs. And from now on, we will exclusively consider the Grothendieck topology of such a special type, unless explicitly stated otherwise.

Definition 1.16. Let $X$ be a set. A Grothendieck topology (also called $G$-topology) $\mathfrak{T}$ on $X$ consists of

  1. a category of subsets of $X$, called admissible open subsets or $\mathfrak{T}$-open subsets of $X$, with inclusions as morphisms, and
  2. a set ${\rm{Cov}}(\mathfrak{T})$ of families $(U_{i}\rightarrow U)_{i\in I}$ of inclusions with $\bigcup_{i\in I}U_{i}=U$, called admissible coverings or $\mathfrak{T}$-coverings.

Remark 1.17. Note that in this case, the fiber products will come as intersections of sets.

We call $X$ a $G$-topological space and write more explicitly as $X_{\mathfrak{T}}$ when $\mathfrak{T}$ is needed to be specified.

§1.4.2 Presheaves and sheaves on $G$-topological spaces.

The notion of Grothendieck topology defined in § 1.4.1 enables us to adapt presheaf or sheaf to such a general situation.

Definition 1.18 ([BS, 5.1, Definition 2]). Let $\mathfrak{C}$ be a category and let $\mathfrak{T}$ be a Grothendieck topology in the sense of Definition 1.14. A presheaf $\mathscr{F}$ on $\mathfrak{T}$ with values in $\mathscr{C}$ is a functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})^{opp}\longrightarrow\mathfrak{C}.$$

If $\mathfrak{C}$ is a category admitting products, then the presheaf $\mathscr{F}$ is said to be a sheaf if the sequence $$\mathscr{F}(U)\rightarrow\prod_{i\in I}\mathscr{F}(U_{i})\mathrel{\mathop{\rightrightarrows}} \prod_{i,j\in I}\mathscr{F}(U_{i}\times_{U}U_{j})$$ is exact for any open covering $(U_{i}\rightarrow U)_{i\in I}$ in ${\rm{Cov}}(\mathfrak{T})$.

Remark 1.19. Note that the definition of Grothendieck topology assures the existence of the fiber products $U_{i}\times_{U}U_{j}$ in $\textrm{Cat}(\mathfrak{T})$.

Morphisms of presheaves or sheaves are just natural transformations of functors.

Definition 1.20. A morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of functors from $\mathscr{F}$ to $\mathscr{G}$. A morphism of sheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$.

Hence, we can define presheaves and sheaves on a $G$-topological space.

Definition 1.21 ([BGR, 9.2.1, Definition 1]). A presheaf $\mathscr{F}$ with values in a category $\mathscr{C}$ on a $G$-topological space $X$ is a contravariant functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})\longrightarrow\mathscr{C},$$ where $\mathfrak{T}$ is a Grothendieck topology on $X$. If $\mathscr{C}$ is a category admitting products, then $\mathscr{F}$ is a sheaf on the $G$-topological space $X$ if it is a sheaf in the sense of Definition 1.18.

The following kind of Grothendieck topology is of special interest to us.

Definition/Proposition 1.22 ([BGR, §5.1, Proposition 5]). Let $K$ be a field and let $X$ be an affinoid $K$-space. Then the strong Grothendieck topology on $X$ is a Grothendieck topology on $X$ that satisfies the following conditions:

$(G_{0})$ $\varnothing$ and $X$ are admissible open subsets of $X$.

$(G_{1})$ Let $U\subset X$ be an admissible open subset with an admissible covering $(U_{i})_{i\in I}$ and let $V\subset U$ a subset. If $U_{i}\cap V$ is admissible open in $X$ for each $i\in I$, then $V$ is admissible open in $X$.

$(G_{2})$ If $\mathfrak{U}=(U_{i})_{i\in I}$ is a covering of an admissible open $U\subset X$ with an admissible refinement such that each $U_{i}$ is admissible open in $X$, then $\mathfrak{U}$ is an admissible covering of $U$.

§1.4.3 Locally $G$-ringed spaces and analytic varieties.

The definition of rigid analytic varieties makes use of the notion of locally $G$-ringed spaces. The so-called $G$-ringed spaces are analogous to our familiar ringed spaces.

Definition 1.23 ([BGR, §9.1.1]). A $G$-ringed space is a pair $(X,\mathscr{O}_{X})$ consisting of a $G$-topological space $X$ and a sheaf $\mathscr{O}_{X}$ of rings on $X$, called the structure sheaf of $X$. A locally $G$-ringed space is a $G$-ringed space $(X,\mathscr{O}_{X})$ such that all stalks $\mathscr{O}_{X,x},x\in X$, are local rings. If the structure sheaf $\mathscr{O}_{X}$ is a sheaf of algebras over a fixed ring $R$, then such a $G$-ringed space $(X,\mathscr{O}_{X})$ is said to be over $R$.

Definition 1.24 ([BGR, §9.1.1]). A map $f:X\rightarrow Y$ between $G$-topological spaces is said to be continuous if the following conditions are satisfied:

(i) If $V\subset Y$ is an admissible subsets, then $f^{-1}(V)$ is an admissible subsets of $X$.

(ii) If $(V_{i})_{i\in I}$ is an admissible covering of an admissible subset $V\subset Y$, then $(f^{-1}(V_{i}))_{i\in I}$ is an admissible covering of the admissible subset $f^{-1}(V)$.

We need appropriate morphisms for $G$-ringed spaces. In fact, we have the following definitions analogous to that of morphisms of ringed spaces and locally ringed spaces.

Definition 1.25 ([BGR, 9.3.1]). A morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a pair $(f,f^{*})$ where $f:X\rightarrow Y$ is a continuous map of $G$-topological spaces and $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of ring maps for any admissible open subset $V\subset Y$ that are compatible with restriction maps.

A morphism of locally $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a morphism of $G$-ringed space $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that all induced ring maps $f^{*}_{x}:\mathscr{O}_{Y,f(x)}\rightarrow\mathscr{O}_{X,x}$ for $x\in X$ are local.

Let $R$ be a fixed ring. An $R$-morphism $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ of $G$-ringed spaces over $R$ is a morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that, in addition, $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of $R$-algebra homomorphisms for all admissible open subsets $V\subset Y$.

Remark 1.26. We follow the convention of ringed spaces that we denote a $G$-ringed space $(X,\mathscr{O}_{X})$ simply by $X$ and we denote a morphism of $G$-ringed spaces by suppressing the morphism of structure sheaves.

In the following, let $k$ be a fixed complete nonarchimedean field. Next, we are in a position to introduce global analytic varieties.

Definition 1.27 ([BGR, 9.3.1, Definition 4]). A rigid analytic variety over $k$ (also called a $k$-analytic variety) is a locally $G$-ringed space $(X,\mathscr{O}_{X})$ over $k$ such that the following axioms are verified:

(i) The Grothendieck topology of $X$ satisfies properties $G_{0}$, $G_{1}$, and $G_{2}$ described in Proposition 1.22.

(ii) There exists an admissible covering $(X_{i})_{i\in I}$ of $X$ with $(X_{i},\mathscr{O}_{X}|_{X_{i}})$ being a $k$-affinoid variety for each $i\in I$.

§2. Almost mathematics

In this section, we focus on Faltings' almost mathematics which first arose in his paper [Hodg], which is the first of a series works on the subject of $p$-adic Hodge theory, ending with [Falt]. The motivating point of $p$-adic Hodge theory can be traced back to Tate's classical paper [Tat1]. We will use Gabber's book [Gab] as a basic reference. The content will be useful in understanding Section 4 in Scholze's paper [Sch].

References

  1. [BGR] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analyticgeometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984.
  2. [BS] Siegfried Bosch, Lectures on Formal and Rigid Geometry, Lect.Notes Mathematics vol. 2105, Springer, Cham, 2014.
  3. [Poon] Bjorn Poonen, Rational Points on Varieties, Graduate Studies in Mathematics Volume: 186, American Mathematical Society, 2017.
  4. [SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Berlin-Heidelberg-New York, Springer. 1972-1973.
  5. [Gab] O. Gabber and L. Ramero, Almost ring theory, volume 1800 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2003.
  6. [Hodg] G.Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299.
  7. [Falt] G.Faltings, Almost étale extensions, Astérisque 279 (2002), 185-270.
  8. [Tat] J. Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257-289.
  9. [Tat1] J. Tate, p-divisible groups, Proc. conf. local fields (1967), 158-183.
  10. [Dug] James Dugundji, Topology, Allyn and Bacon, Inc., 470 Atlantic Avenue, Boston, 1966.
  11. [Tam] Tammo Tom Dieck, Algebraic Topology, European Mathematical Society, 2008.
  12. [Ber] V.G. Berkovich, Spectral Theory and analytic Geometry over NonArchimedean fields, Math. Surv. Monogr. vol. 33, Am. Math. Soc., Providence, RI, 1990.
  13. [Ber1] V.G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Etud. Sci. 78 (1993).
  14. [SP] The Stacks Project Authors, Stacks Project. Available at http://math.columbia.edu/algebraic_geometry/stacks-git/.
  15. [Sch] Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), 245-313.
  16. [Hu] R. Huber, Continuous valuations, Math. Z. 212 (1993), 455-477.
  17. [Hu1] R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30., Friedr. Vieweg & Sohn, Braunschweig, Springer Fachmedien Wiesbaden, 1996.
  18. [Hu2] R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), 513-551.


0 人喜欢

评论区
Ricciflows
Ricciflows

We apologize that this note has ended halfway because the author had quit mathematics😭😭

2024-08-14 13:54:14 回复

弦圈热门内容

大一上挂科后果严重吗?

知乎提问:大一上挂科后果严重吗?我的回答:还真问题不大,我大一的时候身边就有不少同学挂科了,结果无非是补考,或者严重点的重修,最后都能过。我大一大二的时候也是对挂科害怕不已,每次考前复习都十分紧张。直到后来快毕业的时候,我得知自己居然缺了通识课学分不能发毕业证,而我身边那些挂过科的同学全都学分修够了。那时候我才明白没啥好怕的。。。当然最后那个学分还是补上了,虚惊一场。后面我打算在 数学故事天地 写一篇因为沉迷数学导致挂科而大学无法毕业的小说,虽然我文笔不行,但是我有足够的想象力,只要我把逻辑、故事线、设定全写出来,一样会是丰富的故事内容,只不过细节描写没那么动人、生动。希尔伯特也曾经说过,数学家拥有足够丰富的想象力,完全可以当一个作家。原话我现在在网上已经找不着了,只找到了下面这句话"You know, for a mathematician, he did not have enough imagination. But he has become a poet and now he is fine."  ——David Hilbert“他曾没有足够的想象力来当数学家。不过 ...

学数学的目的是什么?能给我带来什么?

知乎提问:学数学的目的是什么?能给我带来什么?我的回答:这个问题有点难以用语言来回答。数学带给了我的东西实在太多了,从童年开始到如今,我整个人看待世界的方式,我的三观,我的方方面面早就被数学所改变,并且与数学难以隔离。如果硬要展开来说,我能想到以下几点:首先就是审美,这种审美是指一种抽象意义上的审美,不是简单的说眼睛看到什么觉得很美。这种审美是你个人数学风格、数学品味、数学思想里最根本的东西,几乎会影响你关于数学的一切。你写下的定义、命题、定理“美不美”,你觉得某个理论“美不美”,这些都跟你的审美有关。其次数学给了我夹杂着理性的感性,我经常一边看数学,一边听音乐,这样能让我沉浸在一个独特的精神世界。呆在这个世界里,思绪会变得清晰,情感也会变得起伏,这个时候往往灵感迸发,很多原来想不懂的东西突然就想懂了。用心理学的说法解释,就是数学带给我体验超心流状态(不是心流)。最后数学还带给我理性思维、更加缜密的逻辑等等,这些其他回答也反复提过,就不说了。

怎样才能培养数学兴趣?

知乎提问:怎样才能培养数学兴趣?我的回答:想要培养数学兴趣很简单,首先你肯定要对数学有好感,如果连这点基础都没有估计也很难对数学感兴趣。然后你只需要不断的了解数学、接触数学,形成一个了解数学=>进一步深入了解数学这样的一个循环,自然而然就会对数学感兴趣。具体的讲,你可以做的包括以下几条,可以根据自己的兴趣进行调整:多读数学相关的介绍文章,或者数学方面的一些资讯报道,从浅层了解数学。多读数学家相关的传记,数学家留下的话、数学家分享的经验等等,这里的数学家不仅仅包括过去杰出的数学家,还需要包括如今在世的数学家。多读不同数学领域相关的教材,多方涉猎,加深对数学各个领域的初步理解。这个做法是最能培养数学兴趣和数学品味的。上面两种方式只是辅助第三种方法,毕竟想要了解数学,培养对数学的喜爱,最直接也是最有效的方法,无疑是直接关注数学本身,直接学起来、思考起来。以上三条主要针对初学者,当你不那么初学之后,就不要目光放得太高了。我曾经有段时间就是因为看得太多名人名家的内容,反而开始看不起那些没那么杰出的人,这完全就是愚蠢的想法!多关注身边同样喜欢数学的人或同行,多交流了解对方的想法和经验,这样对 ...

洛必达法则为何成为禁术?

知乎提问:如题,高考用会扣分,大学微积分考试还明令禁止使用洛必达法则(我个人还是好喜欢洛必达法则)疑惑产生于大一半期考试之前,刚刚学极限没多久的时候。为了让学生更好地理解“极限”这个概念,学校用心良苦,在半期考试中ban了洛必达,仅此而已。我的回答:因为洛必达法则并不是洛必达发现的,而是洛必达买下来的😇。说到洛必达法则,我的回忆就倒回到初三和高中时期,当时做高等数学的极限题我都喜欢直接洛必达法则,我不太想考虑除了洛必达还有什么别的计算方法,没必要。因为洛必达法则明显更加友好,反而更加容易让学生熟练掌握极限,我初三乃至高中的时候,学高等数学能学懂,其中就少不了洛必达法则的功劳。其实多用几次洛必达法则感觉上来了,再去理解极限的本质,也不是不可以。只能说国内的这种教育模式非常的按部就班,就必须你按照学校指定的路径来学习,真的就流水线工厂一样,教育被整成这样,教育出来的人自然也很难有创新思维。这只是普通的通过性考试,完全没必要考虑所谓的公平性问题。就好比,初三的时候自学了高中的正弦定理、余弦定理,或者,高三的时候自学了洛必达法则、级数等微积分的东西,可以很轻松的解决某些题目。这种还勉强能狡辩一 ...

今天晚上弦圈服务器发生崩溃情况,已一切正常莫慌,目前判断是腾讯云的问题

之前我对弦圈进行了优化最近有人反馈网站卡、打不开,我自己也试过这种情况,已再次对弦圈进行优化,接着弦圈基本上就没有再出现过问题,网站浏览也很流畅。不过今天晚上前端服务器突然崩了,我发现后马上对服务器进行了重启,重启过程持续了5-10分钟左右吧,真慢。然后又发现了一点问题,就暂时用后端服务器顶替了,之后前端弄好了又重新用回原来的服务器。在这个过程中因为重启了(edge one)CDN,导致https访问会弹出证书不安全的情况,现在也全部正常了。根据我跟其他人的交流得知,他在东京的服务器前几天也突然崩了,崩的原因也是摸不着头脑的IO读写,然后我咨询客服他也没看到异常。我就一个前端服务器,2核4G就放前端代码,怎么可能会是业务问题。然后网站被黑客疯狂扫描,一直都有但也不至于弄崩服务器,目前判断可能是腾讯云自己的问题。

GTM023 W.H.Greub线性代数经典教材:Linear Algebra

这本教材是我高中时期入门线性代数的主要教材,我的很多基础知识都来源于这本书,如今看回这本书可以说满满的回忆。这本书可以说,是我读过的内容最为全面且完备的线性代数教材了。而且它的语言风格非常的代数化,没有什么直观可言,以抽象为主,表述简练、知识密度高。总之,真的太对我的胃口了,我当时是挺喜欢看这本书。这本教材跟其他线性代数教材一样,先从最基本的向量空间开始讲起,但不同的是,它这里还应用了群论的知识。紧接着这本书以代数抽象的形式讲矩阵和行列式,尤其是行列式,书中的描述直达其代数本质,这是我当时印象挺深刻的。接着书本还继续往外拓展,讲到与向量空间相关的一些概念,如泛函分析中的内积空间,同调代数中的代数和同调。总之,这本书对初学者有一点小门槛,适合喜欢挑战难度、喜欢看高水平读物的初学者看。PS:作者不再提供附件下载。

QQ频道AI视频泛滥?未来互联网上会充斥着AI生成的垃圾视频吗?

QQ这段时间感觉AI视频比以前多了,而且更主要是现在QQ还给AI视频推流了,可以说举措完全跟其他平台不同。以往QQ上的AI视频,基本上都是没流量的,现在给流量扶持,势必会导致AI视频进一步泛滥。其他平台像知乎、公众号、推特,发AI生成的内容,其实是会直接限流的。昨天我在知乎上发一篇AI生成的小说,创作声明了AI写的,结果直接零流量,阅读量1应该就是我自己吧。而在推特上发东西,如果用Gemini修改你自己写的语句,发上去也会被限流。小红书我没试过,之前看那种AI美女的笔记也挺泛滥的,不过后来我举报过以后就基本没看到了,也不知道是不是算法问题,还是小红书算法更新了。总之,小红书也是不鼓励AI生成的。说实话就没几个平台真的会鼓励AI生成的内容,只有极少数幸运儿会得到流量,毕竟说实话绝大多数AI内容都惨不忍睹,我其中最讨厌的就是那种AI美女图片,现在还多了视频,真的恶心,关键是居然还有人会看?尤其是QQ视频,之前还不给AI内容推流,现在直接开始推流了,更加惨不忍睹,关键是还不少人评论互动。如果是我,肯定直接不点,流量都懒得给它。AI视频如果仅仅只是整活那种,那还勉强能接受,但是我更喜欢那种混剪 ...

我开发的宇宙级APP竟然成为了其他世界的系统

陈木是弦圈一名默默无闻的全栈程序员,他每天身兼多职,任劳任怨地工作,既负责网站前端的开发与维护,又得兼顾后端的开发与维护。前段时间,陈木又接到了新的任务,要求他负责弦圈APP相关的开发工作 计划开发弦圈的桌面端版和APP版。于是,陈木在挑选了众多技术与框架后,选择了使用Universal React Native Pro Max进行APP的开发,这是一个近期在全世界都很火的框架。Universal React Native是基于传统的React Native通过最新的universal技术[1]进一步迭代升级,从而能达到用React Native语言开发任何东西原生的一个技术框架,而Pro Max则是它的超级升级版,你甚至能用它编程纳米机器人和可控核聚变引擎。开发的日子时间总是过得飞快,眨眼间就过了几万年,陈木头发都秃了,才终于从工作中缓过来。这时陈木也收到放假的通知 弦圈APP先开发到这里......,他松了口气,终于可以放松一下,并开始着手考虑自己一直以来的设想——开发一个宇宙级APP。所谓的宇宙级APP数亿年以来,一直都是各大星域争相竞争的研究对象,指的是通过开发宇宙级API接口 ...