·

代数几何简介

发布时间:2024-05-09 21:35:41阅读量:772
科普
转载请注明来源

1. Introduction

代数几何是数学的核心领域,也是如今国际数学界的主流。代数几何与许多数学分支都存在广泛的联系,比如数论、微分几何、代数拓扑、复几何、表示论、同调代数、交换代数、偏微分方程等等,这些分支的发展同时也对代数几何起到促进作用。数学史上的许多重大的事件,比如,费马大定理、莫德尔猜想、韦伊猜想的证明都跟代数几何有关。同时,代数几何存在广泛的应用,比如密码学、弦理论、大数据、统计学习理论等等。代数几何之下有众多分支,比如复代数几何,热带几何,算术几何,远阿贝尔几何,$p$进霍奇理论(complex algebraic geometry, tropical geometry, arithmetic geometry, anabelian geometry, p-adic hodge theory),每个分支代表代数几何研究的一个大方向,而在每个大方向下,又有各种以不同的问题为导向的子方向。在这篇文章中,我们将会对代数几何,包括它的分支算术代数几何,做一个简短的介绍。

2. An Introduction to Arithmetic Geometry

算术几何是算术代数几何的简称,它是代数几何的一个分支,主要研究与数论有关的问题,比如丢番图方程。著名的费马大定理其实就是丢番图方程的一种。

Definition 2.1. Diophantine equations are equations whose solutions are required to be integers.

Example 2.2. The equations in Fermat's Last Theorem : $x^{n} + y^{n} = z^{n}$ for all integers $n\geq 2$ are Diophantine equations.

Example 2.3. The equations $ax + by = c$ are called linear Diophantine equations.

Example 2.4. The equations $x^{2} + y^{2} = z^{2}$ are called Pythagorean equations.

从上可以看出椭圆曲线与丢番图方程之间存在某种联系,因此数论上的问题就可以转移到几何上的椭圆曲线进行研究。接下来,我们将给出椭圆曲线的定义,但是在此之前我们先做一些约定。我们记$K$为一个任意的域,$f(x)\in K[x]$ 为$K$上的一个三次多项式,假设这个多项式有不同的根,由于这个域并不一定是代数闭域,因此有些不同的根存在于这个域的代数闭包 $\overline{K}$上。同时,我们假设域$K$不是特征2的。

Definition 2.5. The solutions to the equation $y^{2} = f(x)$ , where $x$ and $y$ are in some extension $K'$ of $K$, are called the $K'$-points of the elliptic curve defined by the equation.

Example 2.6. The locus of the equations $y^{2} = x^{3} - n^{2}x$ is a special case of elliptic curve.

Figure 1. Elliptic curves

从上面的定义和这个例子,我们可以看出椭圆曲线的方程形式上像一个丢番图方程。事实上,当我们限定椭圆曲线方程的解为整数解时,方程就成为了丢番图方程。

既然说到了椭圆曲线,我们不得不提及一下跟椭圆曲线有关联的椭圆函数。椭圆函数是19 世纪数学最光辉的成就之一,它当初是由求椭圆弧长诱导出来的,与椭圆积分也有很密切的联系,毕竟椭圆积分就是用来求椭圆弧长的。顺带一提,椭圆周长目前没有办法求精确值,其周长表达式没法表达成初等函数的形式,它只有椭圆积分表达式以及级数展开式。在定义椭圆函数之前,我们需要先定义复数域$\mathbb{C}$上的lattice。

Definition 2.7. A lattice $L$ in the complex plane is the set of all integral linear combinations of two given complex numbers $\omega_{1}$ and $\omega_{2}$, where $\omega_{1}$ and $\omega_{2}$ are linear independent.

Example 2.8. If we take $\omega_{1}$ = 1 and $\omega_{2}$ = $i$, we will get a lattice of Gaussian integers $\{mi+n| m , n\in \mathbb{Z}\}$.

Definition 2.9. A meromorphic function on $\mathbb{C}$ is said to be an elliptic function relative to a given lattice $L$, if $f(z+l)=f(z)$ for all $l\in L$.

从定义可以看出,椭圆函数是一个双周期的函数。这使人联想到实数情况的单周期函数。一个$\mathbb{R}$上的周期函数,可以看成一个圆上的函数,而一个$L$的椭圆函数则可以看成一个圆环上的函数。我们可以证得关于一个lattice 的所有椭圆函数的集合构成一个域$\mathcal{E}_{L}$,它是所有亚纯函数的域的子域,因为任意两个椭圆函数的和差积商都是椭圆函数。

接下来,我们继续讨论椭圆曲线。椭圆曲线与模形式有紧密的关联,而它们之间的联系成为了证明费马大定理的关键。由于作者并不能完全看懂费马大定理的证明,因此这里不做过多阐述。我们知道当年最后完成费马大定理证明的数学家是Wiles,而Wiles在他的paper 中证明了所有有理数集上的半稳定的椭圆曲线都是modular的,从而使费马大定理成为一个推论被证明。值得一提的是,Wiles在十岁的时候在一本叫做《最后定理》的书中了解到了费马大定理,他很受震撼并打算成为第一个解决费马大定理的人,最后正如他自己所说,很多数学家用自己的一生尝试解决费马大定理都没有成功,最后只有他成功了。关于椭圆曲线、椭圆函数、模形式、费马大定理的证明,想了解更多的读者可以参考[1], [11]

讲完费马大定理,接下来我们来讲讲费马大定理背后的故事,即费马大定理之所以最后能够被Wiles证明,主要是归功于某些数学家的关键性工作。其中两位即是日本数学家Shimura 和Taniyama,他们提出的谷山—志村猜想成为了证明费马大定理的关键一步。还有一位数学大师,在讲他之前我们需要先做一些铺垫。上个世纪,算术几何中不仅仅只有费马大定理,还有韦伊猜想(有限域上的黎曼猜想)、莫德尔猜想。韦伊猜想被Deligne所证明,而莫德尔猜想被Faltings所证明。Deligne和Faltings都是如今数学界的泰斗级人物,不论是Wiles、Deligne还是Faltings ,他们的证明都离不开一个人的奠基性工作,他就是被很多人认为是20世纪最伟大的数学家Grothendieck。Grothendieck被称作代数几何的教皇,有一句很经典的描述他的话就是:“20世纪代数几何涌现了很多天才和菲尔兹奖,但是上帝只有Grothendieck一个。”

Grothendieck的工作使代数几何这门古老的学科重新焕发出新的生命力,这也使代数几何进入如今的黄金时期。Grothendieck的哲学直接被数学所吸收,以至于现在数学的新人根本无法想象Grothendieck时代前这个领域的模样。从二十世纪中叶开始,整个代数几何领域越来越抽象和普遍的研究倾向,大部分都得归功于Grothendieck的影响。Grothendieck 的影响之大,几乎所有数学分支都能感受到。如今的代数几何已经是后Grothendieck时代了,代数几何涌现出了很多后起之秀,比如说日本数学家Shinichi Mochizuki、德国数学家Peter Scholze。

接下来,我们继续介绍算术几何的有关内容。上文中我们提到了可以通过研究椭圆曲线和模形式,进而研究数论问题。而椭圆曲线其实只是代数曲线中的一种特殊情况,代数曲线是算术几何的一个重要研究课题。别看名字很高大上,它其实很常见,比如说在欧几里得平面上的代数曲线,就是我们用多项式方程$f(x,y) = 0$所定义的平面曲线。而想要定义一般的代数曲线就不那么简单了,这需要用到Grothendieck发展的概形的理论。在定义一般的曲线之前,我们需要不少的预备知识,因此在这里我们只做简单的描述,想要了解更多细节的读者可以参考[2]

首先,在定义概形之前,我们需要定义层的概念。我们有阿贝尔群层、环层、模层等等,取决于层所取的范畴。关于范畴论的概念不熟悉的读者可以参考[7]

Definition 2.10 ([2], [16]). Let $X$ be a topological space. A presheaf $\mathcal{F}$ of abelian group on $X$ is a contravariant functor $$ \mathcal{F}:\textbf{Top}^{\textrm{opp}}\rightarrow \textbf{Ab}$$ from the category of open sets of $X$ to the category of abelian groups.

If $\mathcal{F}$ is a presheaf on $X$, the set $\mathcal{F}(U)$ consists of the sections of $\mathcal{F}$ over the open set $U$. If $s\in \mathcal{F}(U)$, we write $s|_{V}$ for an element of $\mathcal{F}(V)$ corresponding to $s$.

Definition 2.11. A presheaf $\mathcal{F}$ on a topological space $X$ is a sheaf, if it satisfies the following conditions:

  1. (Uniqueness) if $U$ is an open set of $X$, and $\{V_{i}\}$ is an open covering of $U$, then for an element $s\in \mathcal{F}(U)$ such that $s|_{V_{i}}$ = 0 for all $i$, we have $s = 0$.
  2. if $U$ is an open set of $X$, and $\{V_{i}\}$ is an open covering of $U$. If we have elements $s_{i}\in \mathcal{F}(V_{i})$ for each $i$, such that for each $i, j$, $s_{i}|_{V_{i} \cap V_{j}} = s_{j}|_{V_{i}\cap V_{j}}$, then there is an element $s \in \mathcal{F}(U)$ such that $s|_{V_{i}} = s_{i}$ for each $i$.

Definition 2.12. Let $\mathcal{F}$ be a presheaf on $X$, if $P$ is a point of $X$, we define the stalk $\mathcal{F}_{P}$ of $\mathcal{F}$ at $P$ to be direct limit of the groups $\mathcal{F}(U)$ $$\lim\limits_{\longrightarrow}\mathcal{F}(U)$$ for all open sets $U$ containing $P$.

一个预层上某个点的茎$\mathcal{F}_{P}$,其实就是一个等价类的集合,我们可以记茎中任意一个元素为$\langle U,s\rangle$,并称它为$\mathcal{F}$截面的芽。其中$U$为$P$ 点的开邻域,$s\in\mathcal{F}(U)$。

接下来,我们记$A$为一个环,$Spec(A)$为该环所有素理想的集合,称为谱。如果$\alpha$是环$A$的任意一个理想,我们记$V(\alpha)\subseteq Spec(A)$为所有包含理想$\alpha$ 的素理想的集合。我们令$V(\alpha)$为$Spec(A)$中的闭集,从而在$Spec(A)$上定义了一个Zariski拓扑。接着,我们再定义拓扑空间$Spec(A)$上的环层$\mathcal{O}$。 这样下来,$(Spec(A),\mathcal{O})$成为一个局部赋环空间。接下来我们给出赋环空间的定义。

回顾一下,一个环$A$被称为局部环,如果它只有唯一一个极大理想$\mathfrak{m}_{A}$。

Definition 2.13. A ringed space is a pair $(X,\mathcal{O}_{X})$, where $X$ is a topological space and $\mathcal{O}_{X}$ is a sheaf of rings on $X$ called the structure sheaf. A ringed space is a locally ringed space, if for each $P\in X$, the stalk $\mathcal{O}_{X,P}$ is a local ring.

有了上面这些储备,我们终于可以定义概形。首先我们定义仿射概形,之后就是一般的概形。

Definition 2.14. An affine scheme is a locally ringed space $(X,\mathcal{O}_{X})$, which is isomorphic to a spectrum $\textrm{Spec }A$ of some ring $A$. A scheme is a locally ringed space $(X,\mathcal{O}_{X})$ in which every point $p$ of $X$ has an open neighborhood $U$ such that $(U,\mathcal{O}_{X}|_{U})$ is an affine scheme.

从以上的定义,我们可以看出概形跟流形有异曲同工之妙。对于一个流形来说,它局部上都是一个欧几里得空间。而对于一个概形来说,它局部上都是一个仿射概形,同时因为同构关系,概形局部上的仿射概形可以看成某个环的谱。这样下来,流形由一个个欧几里得空间拼起来,而概形由一个个环的谱拼起来。而事实上,微分几何里的流形是可以用局部赋环空间表示的(更多细节请参考[10], [15])。

现在我们有了概形,就可以定义一般意义上的代数曲线了。在此之前,我们先定义概形的一些基本性质。

Definition 2.15. Let $X$ be a scheme. We say that $X$ is integral if for each open affine set $U\subset X$, $\mathcal{O}_{X}(U)$ is an integral domain.

Definition 2.16. Let $f:X\rightarrow Y$ be a morphism of schemes. The diagonal morphism of $X$ is a morphism $\triangle:X\rightarrow X\times_{Y}X$ such that $\textrm{pr}_{1}\circ\triangle=\textrm{pr}_{2}\circ\triangle=\textrm{id}_{X}$. We say that $f$ is separated or that $X$ is separated over $Y$ if the diagonal morphism of $X$ is a closed immersion.

Definition 2.17. Let $f:X\rightarrow Y$ be a morphism of schemes. We say that $f$ is proper or that $X$ is proper over $Y$ if $f$ is separated, of finite type, and universally closed.

Definition 2.18. Let $X$ be a scheme. The dimension of $X$ is the dimension of its underlying topological space $\textrm{sp}(X)$, which we will denote by $\textrm{dim }X$.

Definition 2.19. An algebraic curve is an integral scheme of dimension 1, proper over a field $K$, all of whose local rings are regular.

因此,一个代数曲线其实就是一个一维的概形。流形也如此,一维的流形也叫做曲线。以上我们完成了对代数曲线的定义,通过代数曲线我们可以研究数论问题。但是,研究代数曲线是需要工具的。在这些工具中,就有algebraic stack和moduli theory。Algebraic stack是stack的特殊情况,stack是对概形的进一步推广。而stack可以看成某种群胚纤维化范畴(category fibred in groupoid),可以运用Descent à la Grothendieck来定义。而moduli theory就是研究某一类数学对象的参数空间,比如曲线的模空间、椭圆曲线的模空间。由于目前这些理论不是作者的研究方向,作者不作过多阐述。

2.1 The $p$-adic numbers field $\mathbb{Q}_{p}$ and the $p$-adic integers ring $\mathbb{Z}_{p}$

接下来,我们来简单说明一下$p$进数域$\mathbb{Q}_{p}$是如何构造出来的。首先,我们以有理数域$\mathbb{Q}$为例,粗略解释一下完备化(completion)的过程:我们取有理数域所有柯西序列构成的集合,定义逐项加法和乘法后可以证明它构成一个交换环,接着模掉所有零序列构成的理想,我们就得到一个完备的域,它是有理数域的域扩张。一个域的完备化不是唯一的,对应不同定义于域上的绝对值,我们可以定义不同的柯西序列,进而构造出不同的完备化。在这里,我们给出任意域上的绝对值与完备域的定义。

Definition 2.20. Let $K$ be a field. An absolute value on $K$ is a map $\left|\cdot\right|:K\rightarrow\mathbb{R}_{\geq0}$ such that $\left|x\right|=0\Leftrightarrow x=0$, $\left|xy\right|=\left|x\right|\left|y\right|$, and $\left|x+y\right|\leq\left|x\right|+\left|y\right|$. We say that $K$ is complete if it is complete with respect to the distance $d(x,y)=\left|x-y\right|$ induced by the absolute value $\left|\cdot\right|$ on it.

接下来我们先定义有理数域上的$p$进序数。

Definition 2.21. Let $p$ be any prime number. We define the $p$-adic ordinal ord$_{p}a$ of an non-zero integer $a$ to be the highest power of $p$ which divides $a$, i.e. the greatest $m$ such that $p^{m}|a$ or $a\equiv0(\textrm{mod }p^{m})$.

我们约定当整数$a=0$时,ord$_{p}a=\infty$。接着对于任意$x=a/b\in\mathbb{Q}$,我们定义$\textrm{ord}_{p}x=\textrm{ord}_{p}a-\textrm{ord}_{p}b$。如果将ord看成一个函数,那么它是良定义的,因为如果将$x$写成$x=ac/bc$,我们有$\textrm{ord}_{p}x=\textrm{ord}_{p}ac-\textrm{ord}_{p}bc=\textrm{ord}_{p}a-\textrm{ord}_{p}b$。

接着我们定义$p$进绝对值:

$$\left| x \right|_{p} = \begin{cases} \frac{1}{p^{\textrm{ord}_{p}x}}, & \textrm{if} \ x\neq 0\\ 0,  & \textrm{if} \ x = 0. \end{cases}$$

我们先阐述复数域$\mathbb{C}$的构造过程,首先我们作有理数域$\mathbb{Q}$的完备化(关于通常的绝对值$\left|\cdot\right|$)$\widehat{\mathbb{Q}}$得到实数域$\mathbb{R}$,然后取实数域的代数闭包$\overline{\mathbb{R}}$ 得到复数域。$p$进数域$\mathbb{Q}_{p}$其实就是有理数域$\mathbb{Q}$的$p$进完备化(关于$p$进绝对值 $\left|\cdot\right|_{p}$)$\widehat{\mathbb{Q}}$。然而当我们取$p$进数域的代数闭包$\overline{\mathbb{Q}}_{p}$时,发现它不是完备的,因此我们对其再作一次完备化,最后得到$\mathbb{C}_{p}$。它是最小的包含有理数域的既是代数闭的,又是完备的域。

于是,我们有如下关系:

$$\begin{cases} \mathbb{C}_{p}=\widehat{\overline{\mathbb{Q}}}_{p}=\widehat{\overline{\widehat{\mathbb{Q}}}}, \textrm{p-adic analog} \\ \mathbb{C}=\overline{\mathbb{R}}=\overline{\widehat{\mathbb{Q}}}, \textrm{usual case} \end{cases}$$

接着$p$进整数环$\mathbb{Z}_{p}$即是$p$进数域$\mathbb{Q}_{p}$的离散赋值环:

$$\mathbb{Z}_{p}:=\{x\in\mathbb{Q}_{p}\mid \left|x\right|_{p}\leq1\}.$$

3. Grothendieck's Theory

接下来,我们来回顾一下上世纪Grothendieck所做的工作。其实代数几何如今整体上能分成两个方向,一个是以Grothendieck发展的抽象理论为基础的方向,另一个是与微分几何结合主要研究复几何的方向(参考[14])。Grothendieck所做的工作当然远远不止上文所说的概形,还有étale cohomology(平展上同调), crystalline cohomology(晶体上同调), $l$-adic cohomology($l$进上同调), topos(拓扑范), motives, Grothendieck topology, Grothendieck universe等等。

除此之外,Grothendieck 还有三本被誉为代数几何圣经的著作,分别是EGA(Éléments de géométrie algébrique),SGA(Séminaire de géométrie algébrique)和FGA(Fondements de la Géometrie Algébrique),翻译成中文就是《代数几何原理》、《代数几何讨论班》和《代数几何基础》。

首先我们来说说Grothendieck著名的motives理论,该理论的哲学即是将所有的性质相似的上同调,诸如奇异上同调、德拉姆上同调、平展上同调和晶体上同调,统一起来。下面我们给出上同调的定义,该定义涉及到阿贝尔范畴。所谓的阿贝尔范畴,它的原型是阿贝尔群范畴,上世纪Grothendieck将其重要的性质抽象出来,只剩下足够计算同调代数的东西。

Definition 3.1. A cochain complex $\mathcal{C}= \{\mathcal{C}^{n},d^{n}\}$ in an abelian category $\mathfrak{U}$ is a collection of objects $C^{i},i\in \mathbb{Z}$ , and morphisms $d^{i} : C^{i} \rightarrow C^{i+1}$, such that $d^{i}\circ d^{i+1} = 0$. The morphisms $d=\{d^{i}\}$ are called the differential (or coboundary operator).

The $i$th cohomology object of the complex $\mathcal{C}$ is defined to be $H^{i}(\mathcal{C}) = \textrm{Ker }d^{i}/\textrm{Im }d^{i-1}$.

根据范畴的不同,我们可以定义上同调群、上同调模,接着就可以定义singular cohomology(奇异上同调)、de Rham cohomology(德拉姆上同调)、Galois cohomology(伽罗华上同调)、Čech cohomology (切赫上同调)等等。在集合论中,我们有类与集合的概念。所谓的类由所有享有共同性质的数学对象构成,但是它不一定是一个集合,如果它不是一个集合,我们称这个类是真类。接下来,我们给出Grothendieck universe 的定义,它是在上世纪由Grothendieck提出来的,用来避免不构成集合的真类。如果读者想要了解更多相关内容,可以参考[5], [6]

Definition 3.2. A Grothendieck universe is a non-empty set $\mathcal{U}$ that satisfied the following conditions:

  1. if $x\in \mathcal{U}$ and $y\in x$, then $y\in \mathcal{U}$.
  2. if $x,y\in \mathcal{U}$, then $\{ x,y\}\in \mathcal{U}$.
  3. if $x \in \mathcal{U}$, then $\mathcal{P}(x) \in \mathcal{U}$, where $\mathcal{P}(x)$ denotes the set of all subsets of $x$.
  4. if $(x_{i},i\in I)$ is a family of elements of $\mathcal{U}$ and $I \in \mathcal{U}$, then $\bigcup_{i\in I}x_{i} \in \mathcal{U}$.

4. Modern Mathematics

以上内容其实都已经是以前发展的理论了,基本上都是20世纪的内容,已经有点旧了。接下来,我们讲一下21世纪比较新的内容:Shinichi Mochizuki和Peter Scholze的工作。

Shinichi Mochizuki(望月新一)就是那位声称证明了abc猜想的数学家,我们习惯叫他为望月大神。他刚开始主要是做hyperbolic curve相关的研究的,后来他开始通过运用自己以前的研究成果来研究远阿贝尔几何(anabelian geometry)。远阿贝尔几何最初是Grothendieck提出来的一个宏伟的理论,如今它被望月新一进一步发展,构建了一个名叫宇宙际理论(Inter-universal Teichmüller Theory)的东西,用于证明abc猜想,可惜世界上没有多少数学家能够看得懂他的证明,因此关于他的证明主流数学界仍不认可。

不同的是,Peter Scholze的工作则更为主流数学界所接受,很多人都更愿意做Peter Scholze的方向。Peter Scholze就是那个国际奥林匹克数学竞赛拿金牌,高中开始学习研究生数学的数学家,很年轻。在他的博士论文中,他发展出了一个叫状似完备空间(perfectoid spaces)的新东西,成为了当代算术几何最具影响力的数学家之一。

4.1. Rigid Geometry

Peter Scholze 所做的perfectoid spaces与刚性几何(Rigid Geometry)有关,接下来我们将对刚性几何的部分内容做介绍。想要了解更多的读者请参考[3], [4]

首先我们需要研究非阿基米德的绝对值。对于与绝对值相关的valuation,在本文中我们将不予讨论。我们着重讨论非阿基米德的绝对值的特别之处。

Definition 4.1. A (non-archimedean) absolute value $\upsilon$ on a field $K$ is a map $\left| \cdot \right|$ : K $\rightarrow$ $\mathbb{R}_{\geq0}$, such that for all $x,y\in K$ the following conditions verified:

  1. $\left| x \right|$ = 0 $\Leftrightarrow$ $x=0$.
  2. $\left| xy \right|$ = $\left| x \right|$$\left| y \right|$
  3. $\left| x+y \right| \leq \max\{\left| x \right|, \left| y \right|\}$

Proposition 4.2. Let $x,y\in K$, we have $\left| x+y \right|$ = $\max\{\left| x \right|, \left| y \right|\}$, if $\left| x \right| \neq \left| y \right|$.

Proof. Without loss of generality, we assume $\left| x \right| < \left| y \right|$. Then $\left| x+y \right|$ $<$ $\max\{\left| x \right|, \left| y \right|\}$ =$ \left| y \right|$ implies

$$\ \left| y \right| = \left| (y+x)-x \right| \leq \max\{\left| x+y \right|, \left| x \right|\} < \left| y \right|$$

which is contradictory. So we must have $\left| y \right| = \left| y+x \right| = \max\{\left| x \right|, \left| y \right|\}$ as claimed.

通过绝对值,我们定义任意域$K$上的距离为$d(x,y) = \left| x-y \right|$,然后该距离诱导出$K$上的一个拓扑。有了$K$中任意两点的距离,根据非阿基米德的三角不等式,对于所有$x,y,z \in K$,我们可以得出:

$$d(y,z) \leq \max\{d(x,y),d(x,z)\}$$

根据命题4.2,该不等式两边相等,如果不等式右边的两个距离不相等。这意味着:在域$K$中的任意三角形,都是等腰三角形。更进一步,我们可以证出:域$K$中任意一个圆盘中的点都可以作为该圆盘的中心。因此,如果$K$中的两个圆盘有非空交集,那么它们就是共心的。下面我们给出证明。

Definition 4.3. For a centre $a\in K$ and a radius $r\in \mathbb{R}_{> 0}$, we define the disk without boundary to be the set $$D^{-}(a,r) = \{ x \in K\mid d(x,a)<r \}$$

And we define the disk with boundary to be the set $$D^{+}(a,r) = \{ x \in K\mid d(x,a)\leq r\}$$

Proposition 4.4. Each point of disk without boundary in K is the centre of the disk.

Proof. Assume that $a$ is the centre of a disk, $b$ is a point different from $a$. For any $x\in D^{-}(a,r)$, we have $$ d(x,b) = \left| x-b \right| = \left| (x-a)+(a-b) \right| \leq \max\{\left| x-a \right|,\left| a-b \right|\} < r $$

类似的,我们可以证明对于有边界的圆盘,其中的任意一点都可以是它的中心。

4.2 Perfectoid Geometry

接下来我们粗略地说一下,Perfectoid spaces, [4],这篇文章里面的一些内容,鉴于作者水平有限,不能一一详述。首先,perfectoid是perfect+oid,意思就是more or less perfect,类完美。

首先,我们回顾一下什么是完美域(perfect fields)。

Definition 4.5. Let $K$ be a field. We say that $K$ is perfect if either $K$ has characteristic $0$, or if $K$ has characteristic $p>0$, the Frobenius $$ \Phi:K\rightarrow K, x\mapsto x^{p}$$ is an isomorphism.

Perfectoid spaces这篇文章的动机源于以下Fontaine-Wintenberger的一个定理:

Theorem 4.6. The absolute Galois groups of $\mathbb{Q}_{p}(p^{1/p^{\infty}})$ and $\mathbb{F}_{p}((t))$ are canonically isomorphic.

Remark 4.7.

$$\mathbb{Q}_{p}(p^{1/p^{\infty}})=\lim_{\substack{\longrightarrow \\ n>0}}\mathbb{Q}_{p}(p^{1/p^{n}})=\bigcup_{n>0}\mathbb{Q}_{p}(p^{1/p^{n}}).$$

$\mathbb{Q}_{p}(p^{1/p^{\infty}})$是一个特征0的域,它的剩余类域$\mathbb{F}_{p}$是特征$p$,这种域被称为混合特征的(mixed characteristic)。而$\mathbb{F}_{p}((t))$ 是一个特征$p$的域。意思是如果将所有$X^{p^{n}}-p\in\mathbb{Q}_{p}[X]$的根加到$\mathbb{Q}_{p}$里面,它会看起来像一个特征$p$的域$\mathbb{F}_{p}((t))$。想要更好地理解$\mathbb{Q}_{p}(p^{1/p^{n}})$是什么意思,可以参考$\mathbb{C}\cong\mathbb{R}(i)\cong\mathbb{R}[X]/(X^{2}+1)$这个例子。同时,我们有这样一个tower:

$$\mathbb{Q}_{p}\subseteq \mathbb{Q}_{p}(p^{1/p})\subseteq \mathbb{Q}_{p}(p^{1/p^{2}})\subseteq \cdot\cdot\cdot \subseteq \mathbb{Q}_{p}(p^{1/p^{n}})\subseteq \cdot\cdot\cdot \subseteq \mathbb{Q}_{p}(p^{1/p^{\infty}}).$$

定理4.6可以在更加一般的框架下研究,这就引申出了perfectoid fields。 首先,我们给出非阿基米德域的定义,它其实就是一个拓扑由一个非阿基米德绝对值生成的拓扑域。

Definition 4.8. A non-archimedean field is a topological field $K$ whose topology is induced by a non-trivial valuation of rank 1.

Definition 4.9. A perfectoid field is a complete non-archimedean field $K$ with residue characteristic $p>0$ whose associated rank-1-valuation is non-discrete and the Frobenius $\Phi:K^{\circ}/p\rightarrow K^{\circ}/p,x\mapsto x^{p}$ is surjective.

Example 4.10. The $p$-adic completion $\widehat{\mathbb{Q}_{p}(p^{1/p^{\infty}})}$ of $\mathbb{Q}_{p}(p^{1/p^{\infty}})$ and the $t$-adic completion $\widehat{\mathbb{F}_{p}((t))(t^{1/p^{\infty}})}:=\mathbb{F}_{p}((t))((t^{1/p^{\infty}}))$ of $\mathbb{F}_{p}((t))(t^{1/p^{\infty}})$ are perfectoid fields.

$$\widehat{\mathbb{Q}_{p}(p^{1/p^{\infty}})}=\widehat{\mathbb{Z}_{p}[p^{1/p^{\infty}}]}[\frac{1}{p}]=(\lim_{\longleftarrow} \mathbb{Z}_{p}[p^{1/p^{\infty}}]/p^{n})[\frac{1}{p}],$$

$$\widehat{\mathbb{F}_{p}((t))(t^{1/p^{\infty}})}=\widehat{\mathbb{F}_{p}[t^{1/p^{\infty}}]}[\frac{1}{t}]=(\lim_{\longleftarrow} \mathbb{F}_{p}[t^{1/p^{\infty}}]/t^{n})[\frac{1}{t}].$$

Perfectoid field叫做类完美域,当它为特征$p$时,它是一个完美域。同时,这里有一个tilt的过程,它可以看成一个函子叫做tilt funtor:

$$K\mapsto K^{\flat}$$

将一个任意特征的perfectoid field打到一个特征$p$的perfectoid field。同时,我们有

$$K^{\flat}=\lim_{\substack{\longleftarrow \\ x\mapsto x^{p}}}K.$$

接着我们有了更加一般的定理,它推广了定理4.6。

Theorem 4.11. The absolute Galois groups of $K$ and $K^{\flat}$ are canonically isomorphic.

总之,这篇文章中,Peter Scholze提出一种框架,它能将任意特征的问题简化为特征$p$的问题,因为特征$p$往往更好研究,同时也有很多好的性质和结论。

References

  1. Neal Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd ed., Springer-Verlag New York, Inc., 1993.
  2. Robin Hartshorne, Algebraic Geometry, Springer, New York, NY, Springer Science+Business Media New York, 1977.
  3. Siegfried Bosch, Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathematics. Springer, Cham, 2014.
  4. Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), pp. 245–313.
  5. Grothendieck with Artin, M. and Verdier, J. L. Théorie des Topos et Cohomologie Étale des Schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Springer-Verlag Berlin Heidelberg, 1973.
  6. Pierre Deligne, Cohomologie Étale, Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2, Springer-Verlag Berlin Heidelberg, 1977.
  7. Peter J. Hilton and Urs Stammbach, A Course in Homological Algebra, Springer-Verlag New York, 1997.
  8. Fredrik Meyer, Notes on algebraic stacks, https://blog.fredrikmeyer.net/uio-math, 2013.
  9. G. Everest and Thomas Ward, An Introduction to Number Theory, Springer-Verlag London, 2005.
  10. Loring W. Tu, An Introduction to Manifolds, 2nd ed., Springer, New York, NY, 2011.
  11. Andrew John Wiles, Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, 141 (1995), 443-552.
  12. Michael Artin, Allyn Jackson, David Mumford, and John Tate, Coordinating Editors, Alexandre Grothendieck, Notices of the AMS 51, 2016.
  13. Joe Harris and Ian Morrison, Moduli of Curves, Springer-Verlag New York, Springer Science+Business Media New York, 1998.
  14. Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry, Wiley-Interscience; 1st edition (August 16, 1994), 1978.
  15. J.S. Milne, Algebraic Geometry (v6.02), www.jmilne.org/math/ , 2017.
  16. Glen E. Bredon, Sheaf Theory, Springer-Verlag New York, Springer Science+Business Media New York, 1997.

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

动画效果

以 https://www.manitori.xyz/circles/9/encyclopedia/27 &nbsp;这个界面为示例,相关内容哪里,鼠标上下移动的时候会出现动画,但是动画效果不太好,字体上下浮动给人视觉压力较大,字体抖动严重

弹窗不自动关闭

提交以后该界面不会自动关闭,应再提交以后自动关闭该弹窗

【荐读】十首最美现代诗,一生至少读一次

如果席慕容 今生今世 永不再将你想起除了除了在有些个因落泪而湿润的夜里 如果如果你愿意   可笑时间哪有什么如果,可是没有如果,只是没有如果。爱情叶挺王 有一天路标迁了希望你能从容有一天桥墩断了希望你能渡越有一天栋梁倒了希望你能坚强有一天期待蔫了希望你能理解   是期待么?可能只是不甘吧,用最深情且最无奈的语气。远和近顾城 你一会看我一会看云我觉得你看我时很远你看云时很近   距离,什么都不用说,什么都不用表达。断章卞之琳 你站在桥上看风景,看风景人在楼上看你。明月装饰了你的窗子,你装饰了别人的梦。   含蓄隽永,优美如画,别有一番滋味在心头。独语覃子豪 我向你倾吐思念你如石像沉默不应如果沉默是你的悲抑你知道这悲抑最伤我心   明快晓畅,冷峻凄怆,思念繁复,用情至深。一代人顾城 黑夜给了我黑色的眼睛我却用它寻找光明 短短两句诗,诠释了一代人的不屈精神。面朝大海,春暖花开海子 陌生人,我也为你祝福愿你有一个灿烂的前程愿你有情人终成眷属愿你在尘世获得幸福我只愿面朝大海,春暖花开   面朝大海,春暖花开。只这一句,就足以让这位流星诗人得以永恒。乡愁余光中 后来,乡愁是一方矮矮的坟墓我在外头 ...

潘禺:谷歌量子计算芯片给了国内产业界紧迫感

【文/观察者网专栏作者 潘禺】12月10日,谷歌重磅推出量子计算芯片“Willow”,在公关宣传攻势下,马斯克送上了“Wow”,奥特曼也发来了贺电。Willow是一款拥有105个物理量子比特的量子芯片,亮点在于其惊人的计算速度和错误校正能力。据报道,Willow能在不到5分钟的时间内完成一个标准计算任务,而这个任务如果交给全球最快的超级计算机,可能需要超过10-25年,这个数字甚至超过了宇宙的年龄。Willow的另一个成就是其指数级减少错误率的能力。随着量子比特数量的增加,错误率通常会指数增长,但Willow通过先进的量子纠错技术,实现了错误率的指数级降低。每当晶格从3x3增加到5x5,再到7x7时,编码错误率就会以2.14的倍率降低。这种对逻辑错误的潜在抑制为运行有纠错的大规模量子算法奠定了基础。Google Quantum AI团队的工作环境权威专家的反应量子计算的教主和旗手,美国计算机科学家Scott Joel Aaronson在他的博客也做了一些点评,尽管整体上比较积极乐观,但话里话外还是有一些玄机。比如,Aaronson要读者明确,进步大体上符合多数人的预期:对于过去五年一直 ...

谷歌量子计算突破引发争议,国产科技潜力不可小觑

2024年12月9日,谷歌宣布推出新一代量子计算芯片Willow,引发了网友们的热烈讨论。在很多评论中,有人认为谷歌的技术遥遥领先,激起了外界的关注和质疑。量子计算技术作为未来科技发展的重要前沿,始终是科技界讨论的热点。一般来说,量子计算机的表现取决于其拥有的量子比特(qubits)数量及其稳定性。按照目前的研究,数量越多,出错的几率也越高。然而,谷歌的研究人员在此次发布会上自信地表示,Willow芯片通过创新的设计,成功大幅减少了错误,扭转了这一不利局面。其重要的技术突破包括量子纠错的新方法,和在更大规模的量子比特基础上实现指数级的计算效率提升。根据谷歌的说法,Willow芯片在不足五分钟内就完成了一项“标准基准计算”,而现有最快的超级计算机需要耗费一个近乎无法想象的时间——“10的25次方”年才能完成这一任务,这个数字远超宇宙的年龄。显然,在威力如此巨大的技术背后,量子计算机的实际应用也在不断拓宽,包括药物研发、聚变能研究和电池设计等领域,潜力无限。不过,谷歌的这一宣称也受到了一些业内人士的怀疑,认为其技术创新或许只是个噱头。电动汽车巨头、科技创新推动者马斯克也对此发表了意见,建议 ...

一文读懂量子计算:现已进入“实用阶段”,“量子时代”即将到来

划重点:量子计算首次出现于20世纪80年代初,主要依靠量子力学来解决复杂的、以前不太可能解决的计算问题。IBM于2019年推出了首个IBM Q System One量子计算系统,谷歌也声称其实现了“量子霸权”。尽管量子计算行业的实际同比增长率仅为1%,但该领域初创企业2022年获得的总投资达到23.5亿美元。多数首席信息官和IT领袖认为量子计算并未被过分炒作,他们希望更多地关注这项技术,以了解即将到来的颠覆。十年内具有主动纠错功能的大型量子计算机有望诞生,21世纪也将因此被视为“量子时代”。腾讯科技讯 量子计算是一个新兴的科学领域,由于它在许多行业拥有着巨大的应用潜力,已经引起了许多国家和公司的兴趣。随着更多资源和资金的投入,量子计算技术正以极快的速度向前飞跃。有科学家预言,量子计算机正进入“实用”阶段,十年内具有主动纠错功能的大型量子计算机有望诞生,“量子时代的黎明”即将到来。01 量子计算将成改变人类历史进程的新里程碑量子计算这种变革性技术虽然仍处于起步阶段,但它将成为改变全球技术进程的科学趋势之一。量子计算首次出现于20世纪80年代初,是一种变革性的技术趋势,旨在通过快速有效地解 ...

理论深度高的数学分支(如代数几何,代数拓扑)的新一代一流数学家(如恽之玮)做研究之前一般学了多久呀?

知乎提问:感觉所需的预备知识太多,代数几何和代数数论目前只学了半年多一点。要不是我不够聪明,要不是从事这些方向的研究的预备学习时间过高。Peter Scholze倒16岁就能搞明白不少费马大定理的证明,估计他当时的学习速度比我现在的高好几倍。因此,我在学习这些过程中稍微产生了点消极感。我的回答(已删):扯淡,又在这里造谣,都说过了不要神化Peter Scholze,这是对人家的羞辱。建议看看我之前的回答,里面已经把具体的情况解释得很清楚了。求证:关于菲尔兹奖得主舒尔茨的这个非常特殊的说法,是否属实?Peter Scholze确实16岁的时候看费马大定理的证明了,但他什么都看不懂。在我看来,文献看不懂没关系,最重要的是你看不懂还能继续看下去,发现motivation,这最考验一个人的数学成熟度。数学家在做一个问题的时候,也不是全部知识都懂的,往往都是一边做问题一边学的,需要什么就学什么,这样才是效率最高的。我其实不是很明白为什么总要比多少岁看什么什么,好像这真的能完全反应一个人数学的科研能力、创造能力一样。不同的数学家风格截然不同,数学发展的路径也完全不同,很多都是非线性的。只能说有的大 ...

🇩🇪12.25 科隆

专门奔着科隆大教堂来的,只为一睹比圣家堂还牛逼,盖了600多年才交楼的烂尾楼。在里面休息的时候发现游客突然都不见了,然后发现刚好被困在了弥撒时间,来都来了于是硬着头皮速成天主教徒()管风琴的悠扬,唱诗班的吟唱,加上科隆大教堂内部本身就高大宽敞,现场气氛顿时圣洁了起来,亲身体验过真的非常震撼人心。下面的信徒们也纷纷起立捧着唱词本跟着吟唱,我只能强行跟着站起来aiueo了几句然后划十字阿门(毕生所学)神父念念有词了十来分钟只听懂了哈利路亚(悲)本来还想跟完事去讨块圣体尝尝,不知道为什么这次没有领用圣体的环节。不过也算是达成成就参加了一场天主教法事,还是在大名鼎鼎的科隆大教堂()

学习成绩差是一种罪吗?

知乎提问:学习成绩差是一种罪吗?我的回答(已删):能问出这种问题,证明如今社会上很多人被这种唯分数论洗脑的太严重了。学习成绩差怎么了,得罪谁了?学习成绩差本身没啥大不了的,但在zg的教育体制下,却有学习成绩差=坏孩子这种荒谬的事情。就好像在如今社会躺平就会被骂懒惰、不进取,被披上各种不友好的标签。这些都只不过是资本主义社会的产物,因为你懒惰不工作,就不能使资本发生增值,然后资本家就会跳出来给人们洗脑说这样做是不对的。况且学习成绩也跟一个人的实力没必然关系。就数学而言,数学成绩多少跟你数学的研究水平没有半毛钱关系。今年的fields奖得主Hub据说连Gre考试都做不完卷子,反应很慢,学习成绩很差,但这不影响他拿fields奖。本来考试这东西就是在有限的时间内考你教材里的内容,跟创新能力啥没有一点关系。原文发布于 2022-10-21 22:152022年当时应该大二吧,当时的菲尔兹奖得主对我还是挺鼓舞的,可以说是进一步鼓舞了我。之前我一直拿Witten、Bott等半路出家人的事例鼓舞自己,因为我就一普通得不能再普通的学生,在社会上毫无任何优势,唯一的优势或许就是早了解了那么点数学吧。

学高数有什么技巧么?

知乎提问:学高数有什么技巧么?我的回答(已删):学高等数学首先不能去想需要什么技巧,因为学高等数学最需要的是你对其的理解,技巧什么的其实是次要的。因为,理解决定了你数学的高度,如果你遇到某些概念理解不了的话,靠技巧是解决不了的。技巧大多是应用于证明上面的。想要对数学有足够深入的理解,在多看书的同时,对于同一样东西需要反复揣摩,反复与其它相关的概念对比,正如Grothendieck所说,通过构建不同数学对象之间的联系来理解数学。当你通过多次反复学习,对数学的理解到了足够高的程度,其实很多东西就变得trivial了,也并不需要太多的技巧。当然技巧还是有一些的,比如对于一些抽象的概念多看一些例子帮助理解;如果遇到某些东西理解不了,想了很久还是没有想到,可以先跳过,过段时间再去想;可以适当做些习题,但不需要做太多重复的题目,etc.原文发布于 2020-08-15 22:31这又是一篇高考后写的回答,甚是感慨。说实话那个时间段写的回答,比我现在写的会更加真实,也更加有效果,因为那个时间段我就是初学阶段。不像我现在早已过了初学阶段,进入Research做数学的阶段,过去的一些做法和细节已经遗忘了 ...

怎么学好代数结构?

知乎提问:怎么学好代数结构?我的回答(已删):其实抽象代数确实不太好学,抽象代数顾名思义很抽象。我刚开始学抽象代数的时候,也啃得非常吃力。对此,我建议先坚持学下去,不要停,实在不懂的话先跳过,因为后面的内容说不定能帮助你前面内容的理解。在学习的过程中,多积累一些trivial的例子,不需要太复杂的例子。学习是一个积累的过程,尤其是数学,不应心态过于急躁,对于自己弄不懂的概念要多次仔细揣摩,第一次不行就隔段时间再来一次,多学几遍是没有错的,同时可以尝试看多几本抽象代数的书,看看是不是因为不适合自己口味所以觉得很吃力,找到一本最合自己胃口的书。我个人觉得吧,抽象代数其实也只是非常基础的课程,只要有足够的时间,坚持下去,总能弄懂学会的。加油!原文发布于 2020-08-15 22:492020年8月,应该是高三高考完的那段时间,那个时间也是我数学水平、数学知识飞速提升的时间段,但我也遇到了更多的挑战。大一的时候,我一边想做望月新一的远阿贝尔几何,一边也想做Peter Scholze的算术几何。最后在导师的建议下,我选择了专注做Peter Scholze的算术几何。这个时间段,导师对我来说还是 ...

求证:关于菲尔兹奖得主舒尔茨的这个非常特殊的说法,是否属实?

知乎提问:这是我在一篇自媒体文章里看到的关于舒尔茨的学习、科研方式的说法:令人非常吃惊的是,舒尔茨对代数几何产生兴趣竟然是因为看了怀尔斯关于费马大定理的证明。与常人不同的是,舒尔茨几乎不会花时间去学基础知识,比如线性代数,抽象代数这种,他都是直接去看一些论文,当遇到一些不懂的问题时,才会去查阅相关资料,并且他还可以立即学会这些知识,例如他通过研究费马大定理的证明,学会了模形式和椭圆曲线的相关知识。这个说法和我以前理解的学习、科研方式大相径庭,所以我觉得有必要来求证一下是否属实。谢谢!我的回答(已删):你看到的这个中文翻译的采访非常有问题,严重歪曲了Peter Scholze的真实情况。首先这个采访原文的地址是The Oracle of Arithmetic | Quanta Magazine。原文中说到Peter Scholze中学的时候得知Wiles证明了费马大定理,因此去看费马大定理的证明,结果是understood nothing!At 16, Scholze learned that a decade earlier Andrew Wiles had proved the fa ...

读基础数学如何解决经济问题?

知乎提问:读基础数学如何解决经济问题?我的回答(已删):读基础数学还想着赚钱干嘛,想赚钱就别读纯数了。因为如果想赚钱,这难度系数指数级上升,你做纯数可能做得已经很不错了还不如那些IT行业人士赚个月入过万。因此,如果你想靠纯数赚钱,你会觉得很不公平,而且在这浮躁的社会环境里,你怀着这种心态也很难沉得下心来做研究。对于经济问题,正如刘宇航前辈所说,降低需求是最好的办法。原文发布于 2021-05-24 19:06下面引用一下lyh的回答,话说我以前刚开始学数学的时候,知乎还是挺多数学大佬的,这种是真的专业的,不像现在一些数学大v压根没啥数学水平。目前来看,绝大多数数学大v都退乎了,有不少还注销账号了,回答一个也没留下来。lyh算是少数几个还坚持在知乎发言,并且还是持续性更新的,别的哪怕还留在知乎基本也很少发言了。

数学中的「分析」是什么意思?

知乎提问:数学中许多分支名字中带有「分析」二字,如数学分析、实分析、复分析、泛函分析、调和分析、数值分析……牠们的共同点是什么(也就是,「分析」二字是什么意思)?我的回答(原文已删):我感觉分析有研究某个数学对象局部性质的意思。比如说,几何分析就是通过PDE将流形上的局部性质跟整体的拓扑性质联系起来。又比如说,任意形式的波都可以分解成傅立叶级数的形式。这些都是研究局部性质的例子吧。我不是做分析的,这只是我的粗浅理解。。原文发布于 2021-05-24 18:48我看回知乎曾经的回答,我发现2021年前的时间,回答都普遍比较简单。2021年,那时候我应该刚读大一吧,没怎么写过notes,更别提后面写多篇论文了,因此写作能力一般,也懒得长篇大论。