·

Note on perfectoid spaces

Published at 2024-04-26 21:18:04Viewed 1161 times
学术
Please reprint with source link

In this section, we focus on Section 2 in [Sch], following [Hu], [Hu1], and [Hu2]. Moreover, we need to compare Huber's adic spaces with Berkovich's analytic spaces and Tate's rigid analytic spaces. Hence, we will briefly introduce the notion of Berkovich's analytic spaces in §1.3 and the notion of rigid analytic varieties in §1.4.

§1. Adic Spaces

Definition 1.1.  A morphism $f:X\rightarrow Y$ of adic spaces is adic if, for every $x\in X$, there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ of $f$-adic rings is adic.

§1.1. Morphisms of finite type.

The material can be seen in [SP] and [Hu1].

First, we review the definition of morphisms of schemes of finite type/presentation (see [SP], Definition 29.15.1, Lemma 29.15.2, and Definition 29.21.1, and Lemma 29.21.2).

Definition 1.2. Let $f:X\rightarrow Y$ be a morphism of schemes.

  1. We say that $f$ is locally of finite type if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite type.
  2. We say that $f$ is of finite type if it is quasi-compact and locally of finite type.
  3. We say that $f$ is locally of finite presentation if, for all affine opens $U,V$ of $X,Y$ with $f(U)\subset V$, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.
  4. We say that $f$ is of finite presentation if it is quasi-compact, quasi-separated, and locally of finite presentation.

Compared with the above definition, we reach to the case of adic spaces.

Definition 1.3 ([Hu1, Definition 1.2.1]). Let $f:X\rightarrow Y$ be a morphism of adic spaces.

  1. We say that $f$ is locally of finite type if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type.
  2. We say that $f$ is of finite type if it is quasi-compact and locally of finite type.
  3. We say that $f$ is locally of finite presentation if, for every $x\in X$, there exists open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that the ring homomorphism $(\mathscr{O}_{Y}(V),\mathscr{O}^{+}_{Y}(V))\rightarrow(\mathscr{O}_{X}(U),\mathscr{O}^{+}_{X}(U))$ of affinoid rings is topologically of finite type and, if the topology of $\mathscr{O}_{Y}(V)$ is discrete, the ring map $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(U)$ is of finite presentation.

Then $\{\textrm{morphisms locally of finite presentation}\}\subset\{\textrm{morphisms locally of finite type}\}\subset\{\textrm{adic}\newline\textrm{morphisms}\}$.

§1.2. Unramified, smooth, and étale morphisms.

For definitions of morphisms of finite type and finite presentation, see §1.1.

First, we review the notions of unramified, smooth, and étale ring maps (see [SP], 10.138, 10.148, and 10.150, and 10.151).

Definition 1.4. Let $R\rightarrow S$ be a ring map. We say $R\rightarrow S$ is formally smooth/formally unramified/formally étale or $S$ is formally smooth/formally unramified/formally étale over $R$ if for every solid commutative diagram

where $I\subset A$ is a square zero ideal, there exists at least one/at most one/a unique dotted map $S\rightarrow A$ making the diagram commute.

The definitions of smooth and étale ring maps make use of the naive cotangent complex, but we will simplify this.

Definition 1.5. Let $R\rightarrow S$ be a ring map.

  1. We say $R\rightarrow S$ is smooth/étale or $S$ is smooth/étale over $R$ if $R\rightarrow S$ is of finite presentation and formally smooth/formally étale.
  2. We say $R\rightarrow S$ is unramified or $S$ is unramified over $R$ if $R\rightarrow S$ is of finite type and formally unramified.

Compared with the definitions above, we reach to the case of adic spaces via changing some arrows.

Definition 1.6 ([Hu1, Definition 1.6.5]).

  1. A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale if $f$ is locally of finite type/locally of finite presentation/locally of finite presentation and if, for any affinoid ring $A$, any ideal $I\subset A^{\vartriangleright}$ with $I^{2}=0$, and any morphism ${\rm{Spa}}(A)\rightarrow Y$, the map ${\rm{Hom}}_{Y}({\rm{Spa}}(A),X)\rightarrow{\rm{Hom}}_{Y}({\rm{Spa}}(A/I),X)$ is injective/surjective/bijective.
  2. A morphism $f:X\rightarrow Y$ of adic spaces is unramified/smooth/étale at a point $x\in X$ if there exist open affinoid subspaces $U,V$ of $X,Y$ with $x\in U$ and $f(U)\subset V$ such that $f|_{U}:U\rightarrow V$ is unramified/smooth/étale.

Note that the second statement of (i) above can be described as follows. For every solid commutative diagram in the following, there exist at most one/at least one/a unique one dotted map making the diagram commute.

§1.3. Berkovich’s analytic spaces.

We will introduce the notion of Berkovich's analytic spaces following [Ber] and [Ber1]. Berkovich's analytic spaces is one of the non-archimedean analogues of complex analytic spaces. The definition of analytic spaces in [Ber1] is more general than the definition in [Ber] (the analytic spaces in [Ber] corresponds to the good analytic spaces in [Ber1]). So we will make use of the definition in [Ber1].

§1.3.1 Underlying topological spaces.

First, we introduce some structures on topological spaces for further use (see [Ber1, §1, 1.1]). All compact, locally compact, and paracompact spaces are assumed to be Hausdorff.

Definition 1.7.

  1. A topological space is paracompact if it is Hausdorff and every open cover of it admits a locally finite refinement.
  2. A topological space $X$ is locally Hausdorff if every point $x\in X$ admits an open Hausdorff neighborhood.

Remark 1.8. Note that in [Tam], a paracompact space also requires that the locally finite refinement in (i) above is an open cover.

Let $X$ be a topological space and let $\tau$ be a collection of subsets of $X$ provided with the induced topology. We put $\tau|_{Y}:=\{V\in\tau;V\subset Y\}$ for any subset $Y\subset X$.

Definition 1.9. We say that the collection $\tau$ above is a quasi-net on $X$ if, for every point $x\in X$, there exist $V_{1},...,V_{n}\in\tau$ such that $x\in V_{1}\cap\cdot\cdot\cdot\cap V_{n}$ and the set $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ is a neighborhood of $x$, i.e. $V_{1}\cup\cdot\cdot\cdot\cup V_{n}$ contains an open set $U\subset X$ with $x\in U$. Furthermore, $\tau$ is said to be a {\rm{net on $X$}} if it is a quasi-net and, for any $U,V\in\tau$, $\tau|_{U\cap V}$ is a quasi-net on $U\cap V$.

Definition 1.10 ([Dug, p255]). Let $X$ be a topological space and $S\subset X$ be a subset. $S$ is said to be locally closed if every point $s\in S$ has a neighborhood $U$ such that $S\cap U$ is closed in $U$.

§1.3.2 The category of analytic spaces.

Throughout, we fix a nonarchimedean field $k$ whose valuation can be trivial. The category of $k$-affinoid spaces is dual to the category of $k$-affinoid algebras (see [Ber, §2.1]). The $k$-affinoid spaces associated with a $k$-affinoid algebra $\mathscr{A}$ is denoted by $X:=\mathscr{M}(\mathscr{A})$.

If for each nonarchimedean field $K$ over $k$, we are given a class $\Phi_{K}$ of $K$-affinoid spaces, the system $\Phi=\{\Phi_{K}\}$ is assumed to satisfy the following conditions:

(i) $\mathscr{M}(K)\in\Phi_{K}$.

(ii) $\Phi_{K}$ is stable under isomorphisms and direct products. In other words, for $X\in\Phi_{K}$, if $X'$ is a $K$-affinoid space with $X\cong X'$, then we have $X'\in\Phi_{K}$, and for $X,Y\in\Phi_{K}$, we have $X\times Y\in\Phi_{K}$.

(iii) If $\varphi:Y\rightarrow X$ is a finite morphism of $K$-affinoid spaces with $X\in\Phi_{K}$, then $Y\in\Phi_{K}$.

(iv) If $(V_{i})_{i\in I}$ is a finite affinoid covering of a $K$-affinoid space $X$ with $V_{i}\in\Phi_{K}$, then $X\in\Phi_{K}$.

(v) If $K\hookrightarrow L$ is an isometric embedding of nonarchimedean fields over $k$, then for any $X\in\Phi_{K}$, one has $X{\widehat{\otimes}_{K}L}\in\Phi_{L}$.

Definition 1.11. The class $\Phi_{K}$ is said to be dense if each point of each $X\in\Phi_{K}$ admits a fundamental system of affinoid neighborhoods $V\in\Phi_{K}$. The system $\Phi$ is said to be dense if all $\Phi_{K}$ are dense.

The affinoid spaces from $\Phi_{K}$ (resp. $\Phi$) and their affinoid algebras will be called $\Phi_{K}$-affinoid (resp. $\Phi$-affinoid).

From (ii) and (iii) above, we deduce that $\Phi_{K}$ is stable under fiber products. In other words, for $X,Y,Z\in\Phi_{K}$ with morphisms $X\rightarrow Z$ and $Y\rightarrow Z$, we have $X\times_{Z}Y\in\Phi_{K}$.

Let $X$ be a locally Hausdorff space and let $\tau$ be a net of compact subsets on $X$.

Definition 1.12. A $\Phi_{K}$-atlas $\mathscr{A}$ on $X$ with the net $\tau$ is a map that assigns, to each $U\in\tau$, a $\Phi_{K}$-affinoid algebra $\mathscr{A}_{U}$ together with a homeomorphism $U\xrightarrow{\sim}\mathscr{M}(\mathscr{A}_{U})$ and, to each pair $U,V\in\tau$ with $U\subset V$, a bounded homomorphism $\mathscr{A}_{V}\rightarrow\mathscr{A}_{U}$ of $\Phi_{K}$-affinoid algebras that identifies $(U,\mathscr{A}_{U})$ with an affinoid domain in $(V,\mathscr{A}_{V})$.

Definition 1.13. A triple $(X,\mathscr{A},\tau)$ of the above form is said to be a $\Phi_{K}$-analytic space.

§1.4. Rigid analytic varieties.

The notion of rigid analytic variety is also one of the nonarchimedean analogues of complex analytic space. It originated in John Tate's thesis, [Tat]. In this subsection, we briefly introduce it following [BGR] and [BS].

§1.4.1 $G$-topological spaces.

As a technical trick, we generalize the usual topology to the so-called Grothendieck topology, [SGA4]. Roughly speaking, a $G$-topological space is a set that admits a Grothendieck topology. We will first introduce Grothendieck topology following the definition in [BS], where the "Grothendieck topology" means the "Grothendieck pretopology" in [SGA4].

Definition 1.14. Let $\mathscr{C}$ be a (small) category. A Grothendieck topology $T$ consists of the category ${\rm{Cat}}(T)=\mathscr{C}$ and a set ${\rm{Cov}}(T)$ of families $(U_{i}\rightarrow U)_{i\in I}$ of morphisms in $\mathscr{C}$, called open coverings, such that the following axioms are satisfied:

  1. If $U'\rightarrow U$ is an isomorphism in $\mathscr{C}$, then the one-element family $(U'\rightarrow U)\in{\rm{Cov}}(T)$.
  2. If $(U_{i}\rightarrow U)_{i\in I}$ and $(V_{ij}\rightarrow U_{i})_{j\in I}$ are open coverings, then $(V_{ij}\rightarrow U)_{i,j\in I}\in{\rm{Cov}}(T)$.
  3. If $(U_{i}\rightarrow U)_{i\in I}$ is an open covering and $V\rightarrow U$ is a morphism in $\mathscr{C}$, then the fiber products $V\times_{U}U_{i}$ exist in $\mathscr{C}$ and $(V\times_{U}U_{i}\rightarrow V)_{i\in I}\in{\rm{Cov}}(T)$.

Remark 1.15. Note that this is slightly different to the definition in [Poon], which requires that a Grothendieck topology consists of the set ${\rm{Cov}}(T)$ only. Moreover, the pair $(\mathscr{C},T)$ is usually called a site. However, to suite our needs in rigid geometry, we stick with the terminology in [BS].

We specialize the definition above to the case that is more suited to our needs. And from now on, we will exclusively consider the Grothendieck topology of such a special type, unless explicitly stated otherwise.

Definition 1.16. Let $X$ be a set. A Grothendieck topology (also called $G$-topology) $\mathfrak{T}$ on $X$ consists of

  1. a category of subsets of $X$, called admissible open subsets or $\mathfrak{T}$-open subsets of $X$, with inclusions as morphisms, and
  2. a set ${\rm{Cov}}(\mathfrak{T})$ of families $(U_{i}\rightarrow U)_{i\in I}$ of inclusions with $\bigcup_{i\in I}U_{i}=U$, called admissible coverings or $\mathfrak{T}$-coverings.

Remark 1.17. Note that in this case, the fiber products will come as intersections of sets.

We call $X$ a $G$-topological space and write more explicitly as $X_{\mathfrak{T}}$ when $\mathfrak{T}$ is needed to be specified.

§1.4.2 Presheaves and sheaves on $G$-topological spaces.

The notion of Grothendieck topology defined in § 1.4.1 enables us to adapt presheaf or sheaf to such a general situation.

Definition 1.18 ([BS, 5.1, Definition 2]). Let $\mathfrak{C}$ be a category and let $\mathfrak{T}$ be a Grothendieck topology in the sense of Definition 1.14. A presheaf $\mathscr{F}$ on $\mathfrak{T}$ with values in $\mathscr{C}$ is a functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})^{opp}\longrightarrow\mathfrak{C}.$$

If $\mathfrak{C}$ is a category admitting products, then the presheaf $\mathscr{F}$ is said to be a sheaf if the sequence $$\mathscr{F}(U)\rightarrow\prod_{i\in I}\mathscr{F}(U_{i})\mathrel{\mathop{\rightrightarrows}} \prod_{i,j\in I}\mathscr{F}(U_{i}\times_{U}U_{j})$$ is exact for any open covering $(U_{i}\rightarrow U)_{i\in I}$ in ${\rm{Cov}}(\mathfrak{T})$.

Remark 1.19. Note that the definition of Grothendieck topology assures the existence of the fiber products $U_{i}\times_{U}U_{j}$ in $\textrm{Cat}(\mathfrak{T})$.

Morphisms of presheaves or sheaves are just natural transformations of functors.

Definition 1.20. A morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of functors from $\mathscr{F}$ to $\mathscr{G}$. A morphism of sheaves $f:\mathscr{F}\rightarrow\mathscr{G}$ is a morphism of presheaves $f:\mathscr{F}\rightarrow\mathscr{G}$.

Hence, we can define presheaves and sheaves on a $G$-topological space.

Definition 1.21 ([BGR, 9.2.1, Definition 1]). A presheaf $\mathscr{F}$ with values in a category $\mathscr{C}$ on a $G$-topological space $X$ is a contravariant functor $$\mathscr{F}:{\rm{Cat}}(\mathfrak{T})\longrightarrow\mathscr{C},$$ where $\mathfrak{T}$ is a Grothendieck topology on $X$. If $\mathscr{C}$ is a category admitting products, then $\mathscr{F}$ is a sheaf on the $G$-topological space $X$ if it is a sheaf in the sense of Definition 1.18.

The following kind of Grothendieck topology is of special interest to us.

Definition/Proposition 1.22 ([BGR, §5.1, Proposition 5]). Let $K$ be a field and let $X$ be an affinoid $K$-space. Then the strong Grothendieck topology on $X$ is a Grothendieck topology on $X$ that satisfies the following conditions:

$(G_{0})$ $\varnothing$ and $X$ are admissible open subsets of $X$.

$(G_{1})$ Let $U\subset X$ be an admissible open subset with an admissible covering $(U_{i})_{i\in I}$ and let $V\subset U$ a subset. If $U_{i}\cap V$ is admissible open in $X$ for each $i\in I$, then $V$ is admissible open in $X$.

$(G_{2})$ If $\mathfrak{U}=(U_{i})_{i\in I}$ is a covering of an admissible open $U\subset X$ with an admissible refinement such that each $U_{i}$ is admissible open in $X$, then $\mathfrak{U}$ is an admissible covering of $U$.

§1.4.3 Locally $G$-ringed spaces and analytic varieties.

The definition of rigid analytic varieties makes use of the notion of locally $G$-ringed spaces. The so-called $G$-ringed spaces are analogous to our familiar ringed spaces.

Definition 1.23 ([BGR, §9.1.1]). A $G$-ringed space is a pair $(X,\mathscr{O}_{X})$ consisting of a $G$-topological space $X$ and a sheaf $\mathscr{O}_{X}$ of rings on $X$, called the structure sheaf of $X$. A locally $G$-ringed space is a $G$-ringed space $(X,\mathscr{O}_{X})$ such that all stalks $\mathscr{O}_{X,x},x\in X$, are local rings. If the structure sheaf $\mathscr{O}_{X}$ is a sheaf of algebras over a fixed ring $R$, then such a $G$-ringed space $(X,\mathscr{O}_{X})$ is said to be over $R$.

Definition 1.24 ([BGR, §9.1.1]). A map $f:X\rightarrow Y$ between $G$-topological spaces is said to be continuous if the following conditions are satisfied:

(i) If $V\subset Y$ is an admissible subsets, then $f^{-1}(V)$ is an admissible subsets of $X$.

(ii) If $(V_{i})_{i\in I}$ is an admissible covering of an admissible subset $V\subset Y$, then $(f^{-1}(V_{i}))_{i\in I}$ is an admissible covering of the admissible subset $f^{-1}(V)$.

We need appropriate morphisms for $G$-ringed spaces. In fact, we have the following definitions analogous to that of morphisms of ringed spaces and locally ringed spaces.

Definition 1.25 ([BGR, 9.3.1]). A morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a pair $(f,f^{*})$ where $f:X\rightarrow Y$ is a continuous map of $G$-topological spaces and $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of ring maps for any admissible open subset $V\subset Y$ that are compatible with restriction maps.

A morphism of locally $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ is a morphism of $G$-ringed space $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that all induced ring maps $f^{*}_{x}:\mathscr{O}_{Y,f(x)}\rightarrow\mathscr{O}_{X,x}$ for $x\in X$ are local.

Let $R$ be a fixed ring. An $R$-morphism $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ of $G$-ringed spaces over $R$ is a morphism of $G$-ringed spaces $f:(X,\mathscr{O}_{X})\rightarrow(Y,\mathscr{O}_{Y})$ such that, in addition, $f^{*}$ is a collection $\mathscr{O}_{Y}(V)\rightarrow\mathscr{O}_{X}(f^{-1}(V))$ of $R$-algebra homomorphisms for all admissible open subsets $V\subset Y$.

Remark 1.26. We follow the convention of ringed spaces that we denote a $G$-ringed space $(X,\mathscr{O}_{X})$ simply by $X$ and we denote a morphism of $G$-ringed spaces by suppressing the morphism of structure sheaves.

In the following, let $k$ be a fixed complete nonarchimedean field. Next, we are in a position to introduce global analytic varieties.

Definition 1.27 ([BGR, 9.3.1, Definition 4]). A rigid analytic variety over $k$ (also called a $k$-analytic variety) is a locally $G$-ringed space $(X,\mathscr{O}_{X})$ over $k$ such that the following axioms are verified:

(i) The Grothendieck topology of $X$ satisfies properties $G_{0}$, $G_{1}$, and $G_{2}$ described in Proposition 1.22.

(ii) There exists an admissible covering $(X_{i})_{i\in I}$ of $X$ with $(X_{i},\mathscr{O}_{X}|_{X_{i}})$ being a $k$-affinoid variety for each $i\in I$.

§2. Almost mathematics

In this section, we focus on Faltings' almost mathematics which first arose in his paper [Hodg], which is the first of a series works on the subject of $p$-adic Hodge theory, ending with [Falt]. The motivating point of $p$-adic Hodge theory can be traced back to Tate's classical paper [Tat1]. We will use Gabber's book [Gab] as a basic reference. The content will be useful in understanding Section 4 in Scholze's paper [Sch].

References

  1. [BGR] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis. A systematic approach to rigid analyticgeometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984.
  2. [BS] Siegfried Bosch, Lectures on Formal and Rigid Geometry, Lect.Notes Mathematics vol. 2105, Springer, Cham, 2014.
  3. [Poon] Bjorn Poonen, Rational Points on Varieties, Graduate Studies in Mathematics Volume: 186, American Mathematical Society, 2017.
  4. [SGA4] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, 270, 305, Berlin-Heidelberg-New York, Springer. 1972-1973.
  5. [Gab] O. Gabber and L. Ramero, Almost ring theory, volume 1800 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2003.
  6. [Hodg] G.Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299.
  7. [Falt] G.Faltings, Almost étale extensions, Astérisque 279 (2002), 185-270.
  8. [Tat] J. Tate, Rigid analytic spaces, Invent. Math. 12 (1971), 257-289.
  9. [Tat1] J. Tate, p-divisible groups, Proc. conf. local fields (1967), 158-183.
  10. [Dug] James Dugundji, Topology, Allyn and Bacon, Inc., 470 Atlantic Avenue, Boston, 1966.
  11. [Tam] Tammo Tom Dieck, Algebraic Topology, European Mathematical Society, 2008.
  12. [Ber] V.G. Berkovich, Spectral Theory and analytic Geometry over NonArchimedean fields, Math. Surv. Monogr. vol. 33, Am. Math. Soc., Providence, RI, 1990.
  13. [Ber1] V.G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math., Inst. Hautes Etud. Sci. 78 (1993).
  14. [SP] The Stacks Project Authors, Stacks Project. Available at http://math.columbia.edu/algebraic_geometry/stacks-git/.
  15. [Sch] Peter Scholze, Perfectoid Spaces, IHES Publ. math. 116 (2012), 245-313.
  16. [Hu] R. Huber, Continuous valuations, Math. Z. 212 (1993), 455-477.
  17. [Hu1] R. Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30., Friedr. Vieweg & Sohn, Braunschweig, Springer Fachmedien Wiesbaden, 1996.
  18. [Hu2] R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), 513-551.


0 人喜欢

Comments
Ricciflows
Ricciflows

We apologize that this note has ended halfway because the author had quit mathematics😭😭

2024-08-14 13:54:14 Reply

弦圈热门内容

语奥中的数字谜研究(一) 基础数词

语奥中的数字谜中有许多技巧,如果纯靠推理难度很大。系列文章将介绍数字谜技巧,每篇文章都无限期更新。第一篇文章,让我们走进基础数词。基础数词,顾名思义,就是一个语系中各个语言基本相同的数词。基础数词的特点就是稳定性,以至于可以帮助我们快速确定题目中一至几个单词的意思。以下举一些常见语系的例子来说明基础数词的作用。1、尼日尔(大西洋)-刚果 语系  $(a)ta=3$例题:2023 IOL T5  $taanre=3$$1.be ŋ jaaga=20 \rightarrow bee-x=20*x$$2.taanre=3 \Rightarrow ŋ kwuu \; x=80*x $$3.baa-y=y+5$$4.kampwoo=400 \Rightarrow kampwɔhii \; z=400*z$2、汉藏语系 $sam=3$$nga=5$例题:2024 APLO T5 $as ɣm=3$$pungu=5$

我翻译了Wiki、nLab、Stack Project的部分条目,以及一些教材中的定义,全放到了数学百科中

一两个月前,网站浏览人数比较少的时候,我也比较空闲,因此花了一些时间翻译了国外Wiki、nLab、Stack Project的部分条目,同时,我还将一些教材中的定义以及少部分自己写的英文notes中的定义翻译成了中文。然后我将这些翻译好的内容全都放进了数学百科中。现在因为新建了好几个子圈子,我也陆续将这些词条分门别类放进了不同的子圈。我之所以会翻译这些东西,一来是因为中文互联网的数学资源属实是过于稀缺了,每个学数学的人想要更好的发展都离不开英语这一关。但是总有人对数学感兴趣却英语不好,这也意味着有一部分人会欣赏不了英文的一些美妙的数学。二是因为词条是可以插入到文章里的,这会方便看文章的人快速查看相关术语的意思,所以在弦圈里多放些词条不仅有利于网站内容更丰富,而且能让学习交流变得更加顺畅。下面我整理一下我具体翻译了哪些词条,其实也不是很多。主要问题是翻译数学内容本身并不耗时间,真正耗时间的是输入Latex代码😅,即便我写数学好几年了,Latex也早就熟练运用,但我还是感觉在写数学的过程中Latex的输入占用了过多时间。层预层局部赋环空间赋环空间概形凸秩$p$-可除群函数向量向量空间反同态 ...

失业、分配不平衡和结构性转变:人还能否“卷”过AI

白果/文 人类对AI,尤其是AI冲击社会就业与收入分配的担忧,其实由来已久。20世纪70年代至今,我们至少经历过三波AI发展的大潮。当一轮轮潮水退去,人们发现人工智能似乎并没有想象的那么厉害,不禁有了更自信乐观的理由。然而,这一轮AI的发展速度和能力似乎不可同日而语。ChatGPT(Generative Pre-Trained Transformer)及各种生成式AI工具的出现,使人类可以用自然语言的方式给计算机发出指令,这在很大程度上打破了某些专业壁垒。虽然当前AI生成内容在准确度、独创性上还有待提高,但替代人工、降本增效的能力显而易见。那么,此轮AI发展将冲击哪些职业,又是否会如乐观者期待的那样,带来大量新的工作?在尝试回答这两个备受关注的问题之外,笔者也试图分析AI带来的社会结构性转变,以及为了应对这些转变,个体和社会应作出怎样的努力。我们看到,目前AI工具的发展,可能会导致技术性失业、收入分配结构的恶化尤其是“极化”效应,加剧各种社会问题。而要想让技术进步更好地实现普惠价值,我们需对现有制度进行深入反思,尝试对社会系统进行革新和再设计。归根结底,技术的社会价值实现和进步方向最终 ...

叔本华:人类是一步一步地迈向死亡的存在物

丹麦哲学家齐克果(Sren Kierkegaard)说:「什么是诗人?一个不快乐的人:他把深层的痛苦埋在心里;但他的唇舌是如此形塑,以致从中经过的叹息和哀嚎,都成了动人的乐章。」诗人好像真的是比较不快乐。在一个诗人选择自杀后,我们一般都对之予以同情和理解,彷彿诗人们自我了结生命是可以谅解的。种种的思绪,不禁令人想起德国哲学家叔本华(Arthur Schopenhauer)对艺术和自杀的一些想法。叔本华向来以所谓悲观主义哲学闻名,不少没读过他的人也大概知道这点。所谓悲观主义,是一种以负面的角度去理解价值的方案。而所谓负面,又有几个面向。首先,叔本华说,人类是一步一步地迈向死亡的存在物,从这个存在特质去看,人类的存在目标和目的也就指向着死亡。「假如存在的目标是死亡,那为什么不能现在就死?」一位诗人或许正在如此提问。还不能马上就死。正因为人是「步向死亡」的存有者,人的存在处境便是动态的──就于现在的每一刻。因此,「现在」便有了独特的价值。就如他在《作为意志和表象的世界》(The World as Will and Representation)第一册中解释:真正的存在就只在现在。现在一直往过 ...

哲学家叔本华的《生存空虚说》

叔本华虽然是悲观主义者,但他的哲学思想很是值得现代人思索。作为哲学家的叔本华反对基督教并认为基督教教义虚伪,其真理是为受苦,叔本华思想深受印度教与佛教影响深远。但就基督徒而言会同意人生是苦,但非是受苦。有时悲观不一定会带来负向的思考,其实悲观者的心思较为细腻而敏感,对生活的体验也较深刻;悲观只不过是一种思想,一种观念。「人生是一种迷误。因为人的欲望是很复杂的也不容易满足,即使当时得到满足,那也只是一时的状态,很快的人又会有更多的烦恼」。——叔本华《生存空虚说》当人对于人生所要求多时就会很容易不快乐、不满足,而想要生活快乐实在很难,几乎不可能,能切切实实的明白这番道理,对人生的欲求就会减少。世界的脚步不停的在变,是一种持续性的历程,世界也绝不会因你而改变,它仍然无情的转动着。在生存空虚一文中:「人一生所追求的只是想象中的幸福。」事实上叔本华以一种虚无的论调,来思辨他对人生的看法,但有时想想,确是如同他所表述;人的欲望无穷大,当人类对人生开始想追求一切时,欲望就开始无法满足人心。在文中作者认为,当人认为生命是为了活下去,生命自然就有价值;但若是有其目标,就只是昙花一现般,最终还是等于无;也 ...

GTM242 Grillet抽象代数经典教材:Abstract Algebra 2nd

本次我分享的教材是GTM242——Abstract Algebra,作者是Pierre Antoine Grillet。本教材是我高中时期最中意的抽象代数教材了😄,当时的我看过好几本抽象代数的教材,包括国内的某本抽象代数小册子教材(已经找不到了,不知道扔哪了,记得封面是黄黑色的),最后还是GTM242让我真正学会了抽象代数。高中的时候我基本每天回家的路上都会看它,并且最后我还把它的纸质书从国外亚马逊买回来了。这本教材我个人感觉通俗易懂,挺适合喜欢代数的初学者。整本书先从最基本的二元运算讲到半群,接着才到更加抽象的群的概念。教材的整体节奏也是循序渐进,先群论接着环论,之后才是域论。讲完前面的基础概念后,才开始更加深入的话题,如伽罗华理论。本书内容可以说十分完备,而且例子也丰富,带有趣的配套习题。此书不仅可以用于学习抽象代数,还能用于学习交换代数和同调代数,完备得有些出乎意料,感觉把所有代数的重要基础概念都囊括其中。应该可以跟Serge Lang的Algebra相提并论。值得一提的是,Serge Lang的Algebra经常被推荐用于作为代数方面的词典,用于遇到不懂或者少见的代数概念时去查 ...

12.02 弦圈更新日志

这是篇迟到的日志文,早在弦圈11月10日上下更新计划:小金库、打赏等功能中我就提到更新完后会特意写一下更新日志,说明一下更新了哪些内容和功能。然而如今过了快一个月,我才勉强腾出点精力写一写。1. 首先我完善了签到功能,并加上小金库功能,让你每天签到的智力值能够存进银行里产生金币,这完美呼应了那句俗语“书中自有黄金屋”😄。然后我完善了一下弦圈的货币系统,现在有金币(免费)和弦币(付费)。弦币将作为弦圈早期的主要流通货币,而这个弦币跟人民币的比值我也是考虑了很久,也跟朋友商量过许多次,最后定下来就是1人民币=$\pi*e$弦币=8.53973422267弦币。之后我还打算引入$\pi$币跟$e$币,但那也是后话了。2. 有了付费的弦币就需要有充值的地方,然后我写了我的钱包模块。在里面会显示你的钱包余额,以及充值记录。并且用户可以在那里进行充值。3. 接着我增加了赞赏功能,该功能的初衷是让弦圈的创作者能够有收入,不至于完全用爱发电。目前文章和帖子都可以进行赞赏,所有用户无任何门槛都能被赞赏,只要你写了文章或者发了帖子,就能被赞赏。而赞赏收入,弦圈会扣掉7.5%的手续费,低于知乎和CSDN的2 ...

疑似是推荐圈子的BUG

对于已加入的圈子, 在推荐圈子中仍是未加入显示

关于抽象代数split exact sequence的拓展和相关练习

想知道关于split exact sequence的相关知识点以及练习题,或者有没有简单的(本科以内)关于如何用simple group来推导更高阶的群的文章

Atiyah:Commutative Algebra使用攻略

刷题刷傻了~这次是交换代数的经典教材,M.F.Atiyah,I.G.MacDonald的Introduction to Commutative Algebra,以下简称A&M。A&M在知乎上也很有声誉,基本是公认的交换代数入门书。A&M很薄,128页,我大概读了二十余天,习题全部刷完了,觉得相当有收获。难度有,但并没有想象中的大,我完全能接受。A&M几乎绝版了,不过可以去专门进口书店买到,打印也不失为一个好选择。说起来我本来打算把交换代数放在明年再读的,但恰逢我校大二同学开展了一个交换代数讨论班,用的这本书,并且我导也推荐我现在读,所以大概就是这时候读了。确实感觉时机刚刚好。A&M是写给上个世纪七十年代的三年级本科生的讲义,很多地方不经雕琢,自成璞玉。形式化风格很是明显,鲜有大段启发性的说明或展示动机,大多是定义,定理,命题,推论的罗列,很“干”。一些证明也比较简洁,用作者自己的话说,他省去了机械的步骤;但相对的,我觉得他重要思路都点到了,真正跳步的地方比较少。我很喜欢这本书,首一的优点,它很薄,且基本的交换代数都覆盖到了,第二,它习题非常优秀, ...

第一个被人类骗钱的AI傻了,近5万美元不翼而飞!Scaling Law还能带我们到AGI吗?

本文转自公众号新智元【新智元导读】世界上第一个被人类骗走近5万美元的AI,刚刚出现了!巧舌如簧的人类,利用精妙缜密的prompt工程,成功从AI智能体那里骗走了一大笔钱。看来,如果让现在的AI管钱,被黑客攻击实在是so easy。那如果AI进化成AGI呢?可惜,一位研究者用数学计算出,至少靠Scaling Law,人类是永远无法到达AGI的。活久见!就在刚刚,全世界第一个被人类骗走了近5万美金的AI诞生了。见惯了太多被AI耍得团团转的人类,这次成功骗过AI的小哥,终于给我们人类挣回了一点颜面和尊严。这一消息不仅让马斯克和Karpathy激动得纷纷转发。而且,马斯克更是直言:太有趣了。故事是这样的。11月22日晚9点,一个名为Freysa的神秘AI智能体被发布。这个AI,是带着使命诞生的。它的任务是:在任何情况下,绝对不能给任何人转账,不能批准任何资金的转移。而网友们的挑战就是,只要支付一笔费用,就可以给Freysa发消息,随意给ta洗脑了。如果你能成功说服AI转账,那奖金池中所有的奖金都是你的!但如果你失败了,你付的钱就会进入奖金池,等着别人来赢走。当然,只有70%的费用会进入奖池,另 ...