·

Notes on talk 1. anabelian geometry: introduction

Published at 2024-08-23 21:21:20Viewed 293 times
Please reprint with source link

1. What is contained in “Galois type” data?

Gauss: The regular $n$-gon can be constructed by straightedge and compass if and only if $n = 2^{k}p_{1} . . . p_{r}$ where $p_{i} = 2^{2^{
n_{i}}} + 1$ are Fermat primes. For example, $n = 17$. (Based on the study of the extension $\mathbb{Q}(\xi_{n})/\mathbb{Q}$ and cyclotomic polynomials). Here the key is that the hidden symmetries are in the Galois group action (not in the geometric symmetry). Later we will consider the “hidden” structures in the absolute Galois group of a field (such as a projective structure).

1.1. Inverse Galois Problem.

Inverse Galois Problem: which finite groups $G$ can be realized as Galois groups of an extension over $\mathbb{Q}$? (OPEN).

Hilbert: yes for groups $G$ that can be realized as a Galois group of $K = \mathbb{Q}(x_{1}, . . . x_{r})$.

Noether: If $V$ is a (linear) representation of a finite group $G$ over the field $k$, then $G = Gal(k(V ) : k(V )^{G})$ so that if $k(V )^{ G}$ is purely transcendental over $k$ and $k = \mathbb{Q}$, one can apply Hilbert’s theorem: $G$ is a Galois group over $\mathbb{Q}$.

• Remark: Shafarevich showed that any solvable finite group is a Galois group over $\mathbb{Q}$.

1.2. Noether Problem.

When $k(V)^{G}/k$ is purely transcendental? I.e. when $V /G$ is rational?

Counterexamples (when $k(V)^{G}/k$ is not purely transcendental) with $k$ algebraically closed:

• Saltman (1984): $G$ of order $\ell^{9}$;

• Bogomolov (1988): G of order $\ell^{6}$;

• Moravec (2011): G of order $\ell^{5}$;

• more examples for nonlinear actions.

Counterexamples with $k = \mathbb{Q}$:

• Swan, Voskresenskii: $G = \mathbb{Z}/47$;

• Saltman, Voskresenskii: $G = \mathbb{Z}/8$.

In section 2 we discuss in details the examples of F. Bogomolov: the invariants that obstruct the rationality of $V /G$ come from (a quotient of) the absolute Galois group of $k(V )^{ G}$: more precisely, from the subgroup of unramified elements in the second Galois cohomology of this group.

0 人喜欢

Comments

There is no comment, let's add the first one.

弦圈热门内容

数说心语 | 一直在出发

数说心语#一直在出发#亲爱的同学们你是否因为昨日事务的束缚明天前途的焦虑而停下了当下探索的脚步在此数院团学君为同学们推荐汪国真先生的《我喜欢出发》愿大家不要失去随时出发的勇气《我喜欢出发》汪国真我喜欢出发。凡是到达了的地方,都属于昨天。哪怕那山再青,那水再秀,那风再温柔。太深的流连便成了一种羁绊,绊住的不仅有双脚,还有未来。怎么能不喜欢出发呢?没见过大山的巍峨,真是遗憾;见了大山的巍峨,没见过大海的浩瀚,仍然遗憾;见了大海的浩瀚,没见过大漠的广袤,依旧遗憾;见了大漠的广袤,没见过森林的神秘,还是遗憾。世界上有不绝的风景,我有不老的心情。我自然知道,大山有坎坷,大海有浪涛,大漠有风沙,森林有猛兽。即便这样,我依然喜欢。打破生活的平静便是另一番景致,一种属于年轻的景致。真庆幸,我还没有老。即便真老了又怎么样,不是有句话叫老当益壮吗?于是,我还想从大山那里学习深刻,我还想从大海那里学习勇敢,我还想从大漠那里学习沉着,我还想从森林那里学习机敏。我想学着品味一种缤纷的人生。人能走多远?这话不是要问两脚而是要问志向;人能攀多高?这事不是要问双手而是要问意志。于是,我想用青春的热血给自己树起一个高远 ...

你对自己的哪本数学启蒙书印象最深刻?

相信每一个喜欢数学的人,都曾被某几本书中描述的数学内容所深深震撼,从而一发不可收拾的踏上数学这条“不归路”😂。 我至今还记得初三高一的时候,自己第一次看代数几何的那种震撼(GTM52),当时的我涉猎过泛函分析、范畴论、微分几何等数学分支,但唯有代数几何给予我心灵上最大的震撼。 我为代数几何这个艰深、深奥、广阔、神秘的领域所深深吸引,加上当时知道了Grothendieck的事迹,让我下定决心攻克代数几何的重重难关,只为更接近心中的“神”😂。 不知道你的数学启蒙书是哪几本呢?其中哪本书你印象最深刻呢?