·

Challenges and Future Directions for AI Spark Big Model

Published at 2024-07-21 11:12:40Viewed 1147 times
Please reprint with source link

Introduction

The rapid evolution of big data technologies and artificial intelligence has radically transformed many aspects of society, businesses, people and the environment, enabling individuals to manage, analyze and gain insights from large volumes of data (Dwivedi et al., 2023). The AI Spark Big Model is one effective technology that has played a critical role in addressing significant data challenges and sophisticated ML operations. For example, the adoption of Apache Spark in various industries has resulted in the growth of a number of unique and diverse Spark applications such as machine learning, processing streaming data and fog computing (Ksolves Team, 2022). As Pointer (2024) stated, in addition to SQL, streaming data, machine learning, and graph processing, Spark has native API support for Java, Scala, Python, and R. These evolutions made the model fast, flexible, and friendly to developers and programmers. Still, the AI Spark Big Model has some challenges: the interpretability of the model, the scalability of the model, the ethical implications, and integration problems. This paper addresses the negative issues linked to the implementation of these models and further explores the  potential future developments that Spark is expected to undergo.

Challenges in the AI Spark Big Model

One critical problem affecting the implementation of the Apache Spark model involves problems with serialization, precisely, the cost of serialization often associated with Apache Spark (Simplilearn, 2024). Serialization and deserialization are necessary in Spark as they help transfer data over the network to the various executors for processing. However, these processes can be expensive, especially when using languages such as Python, which do not serialize data as effectively as Java or Scala. This inefficiency can have a significant effect on the performance of Spark applications. In Spark architecture, applications are partitioned into several segments sent to the executors (Nelamali, 2024). To achieve this, objects need to be serialized for network transfer. If Spark encounters difficulties in serializing objects, it results in the error: org. Apache. Spark. SparkException: Task not serializable. This error can occur in many situations, for example, when some objects used in a Spark task are not serializable or when closures use non-serializable variables (Nelamali, 2024). Solving serialization problems is essential for improving the efficiency and stability of Spark applications and their ability to work with data and execute tasks in distributed systems.

Figure 1: Figure showing the purpose of Serialization and deserialization

The second challenge affecting the implementation of Spark involves the management of memory. According to Simplilearn, 2024, the in-memory capabilities of Spark offer significant performance advantages because data processing is done in memory, but at the same time, they have drawbacks that can negatively affect application performance. Spark applications usually demand a large amount of memory, and poor memory management results in frequent garbage collection pauses or out-of-memory exceptions. Optimizing memory management for big data processing in Spark is not trivial and requires a good understanding of how Spark uses memory and the available configuration parameters (Nelamali, 2024). Among the most frequent and annoying problems is the OutOfMemoryError, which can affect the Spark applications in the cluster environment. This error can happen in any part of Spark execution but is more common in the driver and executor nodes. The driver, which is in charge of coordinating the execution of tasks, and the executors, which are in charge of the data processing, both require a proper distribution of memory to avoid failures (Simplilearn, 2024). Memory management is a critical aspect of the Spark application since it affects the stability and performance of the application and, therefore, requires a proper strategy for allocating and managing resources within the cluster.

The use of Apache Spark is also greatly affected by the challenges of managing large clusters. When data volumes and cluster sizes increase, the problem of cluster management and maintenance becomes critical. Identifying and isolating job failures or performance issues in large distributed systems can be challenging (Nelamali, 2024). One of the problems that can be encountered is when working with large data sets; actions sometimes produce errors if the total size of the results exceeds the value of Spark Driver Max Result Size set by Spark. Driver. maxResultSize. When this threshold is surpassed, it triggers the error: org. Apache. Spark. SparkException: Job aborted due to stage failure: The total size of serialized results of z tasks (x MB) is more significant than Spark Driver maxResultSize (y MB) (Nelamali, 2024). These errors highlight the challenges of managing big data processing in Spark, where complex solutions for cluster management, resource allocation, and error control are needed to support large-scale computations.

Figure 2: The Apache Spark Architecture

Another critical issue that has an impact on the Apache Spark deployment is the Small Files Problem. Spark could be more efficient when dealing with many small files because each task is considered separate, and the overhead can consume most of the job's time. This inefficiency makes Spark less preferable for use cases that involve many small log files or similar data sets. Moreover, Spark also depends on the Hadoop ecosystem for file handling (HDFS) and resource allocation (YARN), which adds more complexity and overhead. Nelamali, 2024 argues that although Spark can operate in standalone mode, integrating Hadoop components usually improves Spark's performance.

The implementation of Apache Spark is also affected by iterative algorithms as there is a problem of support for complex analysis. However, due to the system's architecture being based on in-memory processing, in theory, Spark should be well-suited for iterative algorithms. However, it can be noticed that it can be inefficient sometimes (Sewal & Singh, 2021). This inefficiency is because Spark uses resilient distributed datasets (RDDs) and requires users to cache intermediate data in case it is used for subsequent computation. After each iteration, there is data writing and reading, which performs operations in memory, thus noting higher times of execution and resources requested and consumed, which affects the expected boost in performance. Like Spark, which has MLlib for extensive data machine learning, some libraries may not be as extensive or deep as those in the dedicated machine learning platforms (Nguyen et al., 2019). Some users may be dissatisfied with Spark’s provision since MLlib may present basic algorithms, hyper-parameter optimization, and compatibility with other extensive ML frameworks. This restriction tends to make Spark less suitable for more elaborate analytical work, and a person may have to resort to the use of other tools as well as systems to obtain a certain result.

The Future of Spark

a. Enhanced Machine Learning (ML)

Since ML assumes greater importance in analyzing BD, Spark’s MLlib is updated frequently to manage the increasing complexity of ML procedures (Elshawi et al., 2018). This evolution is based on enhancing the number of the offered algorithms and tools that would refine performance, functionality, and flexibility. Future enhancements is more likely to introduce deeper learning interfaces that can be directly integrated into the Spark platform while implementing more neural structures in the network. Integration of TensorFlow and PyTorch, along with the optimized library for GPU, will be helpful in terms of time and computational complexity required for training and inference associated with high dimensional data and large-scale machine learning problems. Also, the focus will be on simplifying the user interface through better APIs, AutoML capabilities, and more user-friendly interfaces for model optimization and testing (Simplilearn, 2024). These advancements will benefit data scientists and engineers who deal with big data and help democratize ML by providing easy ways to deploy and manage ML pipelines in distributed systems. Better support for real-time analysis and online education will also help organizations gain real-time insights, thus improving decision-making.

b. Improved Performance and Efficiency

Apache Spark's core engine is continuously improving to make it faster and more efficient as it continues to be one of the most popular technologies in the ample data space. Some of the areas of interest are memory management and other higher levels of optimization, which minimize the overhead of computation and utilization of resources (Simplilearn, 2024). Memory management optimization will reduce the time taken for garbage collection and enhance the management of in-memory data processing, which is vital for high throughput and low latency in big data processing. Also, improvements in the Catalyst query optimizer and Tungsten execution engine will allow for better execution of complicated queries and data transformations. These enhancements will be beneficial in cases where large amounts of data are shuffled and aggregated, often leading to performance issues. Future attempts to enhance support for contemporary hardware, like faster storage devices such as NVMe and improvements in CPU and GPU, will only increase Spark's capacity to process even more data faster (Armbrust et al., 2015). Moreover, future work on AQE will enable Spark to adapt the execution plans at runtime by using statistics, which will enhance data processing performance. Altogether, these improvements will guarantee that Spark remains a high-performance and scalable tool that will help organizations analyze large datasets.

c. Integration with the Emerging Data Sources

With the growth of the number of data sources and their types, Apache Spark will transform to process many new data types. This evolution will enhance the support for the streaming data originating from IoT devices that give real-time data that requires real-time analyses. Improved connectors and APIs shall improve data ingestion and processing in real-time, hence improving how quickly Spark pulls off high-velocity data (Dwivedi et al., 2023). In addition, the exact integration with the cloud will also be improved in Spark, where Cloud platforms will take charge of ample data storage and processing. This involves more robust integration with cloud-native storage, data warehousing, and analytics services from AWS, Azure, and Google Cloud. Also, Spark will leverage other types of databases, such as NoSQL, graph, and blockchain databases, to enable the user to conduct analytics on different types and structures of data. Thus, Spark will allow organizations to offer the maximum value from the information they deal with, regardless of its source and form, providing more comprehensive and timely information.

d. Cloud-Native Features

Since cloud computing is becoming famous, Apache Spark is also building inherent compatibility for cloud-based environments that makes its use in cloud environments easier. The updates focusing on the cloud surroundings are the Auto-Scaling Services for the provisioning and configuring tools that simplify the deployment of Spark Clusters on cloud solutions (Simplilearn, 2024). These tools will allow integration with cloud-native storage and compute resources and allow users to grow their workloads on the cloud. New possibilities in resource management will enable the user to control and allocate cloud resources more effectively according to their load, releasing resources in case of low utilization and adapting costs and performance characteristics in this way. Spark will also continue to provide more backing to serverless computing frameworks, enabling users to execute Spark applications without handling the underlying infrastructure. This serverless approach will allow for automatic scaling, high availability, and cost optimization since users only pay for the time the computing resources are used. Improved support for Kubernetes, one of the most popular container orchestration systems, will strengthen Spark's cloud-native features and improve container management, orchestration, and integration with other cloud-native services (Dwivedi et al., 2023). These enhancements will help to make Spark more usable and cost-effective for organizations that are using cloud infrastructure to support big data analytics while at the same time reducing the amount of overhead required to do so.

e. Broader Language Support

Apache Spark is expected to become even more flexible as the support for other programming languages is expected to be added to the current list of Scala, Java, Python, and R languages used in Spark development. Thus, by including languages like Julia, which is famous for its numerical and scientific computing performance, Spark can draw developers working in specific niches that demand high data processing (Simplilearn, 2024). Also, supporting languages like JavaScript could bring Spark to the large community of web developers, allowing them to perform big data analytics within a familiar environment. The new language persists in compatibility to integrate Spark's various software environments and processes that the developers deem essential. Besides, this inclusiveness increases the span of control, thereby making extensive data analysis more achievable, while the increased number of people involved in the Spark platform ideas fosters creativity as more people get a chance to participate as well as earn from the platform (Dwivedi et al., 2023). Thus, by making Spark more available and setting up the possibility to support more programming languages, it would be even more embedded into the vast data platform, and more people would come forward to develop the technology.

f. Cross-Platform and Multi-Cluster Operations

In the future, Apache Spark will experience significant developments aimed at enhancing the long-awaited cross-system interoperability and organizing several clusters or the cluster of one hybrid or multiple clouds in the future (Dwivedi et al., 2023). Such improvements will help organizations avoid having Spark workloads run on one platform or cloud vendor alone, making executing more complex and decentralized data processing tasks possible. The level of interoperability will be enhanced in a way that there will be data integration and data sharing between the on-premise solutions, private clouds and public clouds to enhance data consonance (Simplilearn, 2024). These developments will offer a real-time view of the cluster and resource consumption, which will help to mitigate the operational overhead of managing distributed systems. Also, strong security measures and compliance tools will guarantee data management and security in different regions and environments (Dwivedi et al., 2023). With cross-platform and multi-cluster capabilities, Spark will help organizations fully leverage their data architecture, allowing for more flexible, scalable, and fault-tolerant big data solutions that meet the organization's requirements and deployment topology.

g. More robust Growth of community and Ecosystem

Apache Spark's future is, therefore, closely linked with the health of the open-source ecosystem, which is central to the development of Apache Spark through contributions and innovations. In the future, as more developers, researchers, and organizations use Spark, we can expect to see the development of new libraries and tools that expand its application in different fields (Simplilearn, 2024). Community-driven projects may promote the creation of specific libraries for data analysis, machine learning, and other superior functions, making Spark even more versatile and efficient. These should provide new features and better performance, encourage best practice and comprehensive documentation and make the project approachable for new members if and when they are needed. The cooperation will also be healthy in developing new features for real-time processing and utilising other resources and compatibility with other technologies, as noted by Armbrust et al., 2015. The further development of the Ecosystem will entail more active and creative users who can test and improve the solutions quickly. This culture of continual improvement and expansion of new services will ensure that Spark continues to evolve; it will remain relevant today and in the future for big data analytics and will remain desirable for the market despite the dynamics of the technological landscape.

Conclusion

Despite significant progress, Apache Spark has numerous difficulties associated with big data and machine learning problems when using flexible and fault-tolerant structures: serialization, memory, and giant clusters. Nonetheless, there are a couple of factors that have currently impacted Spark. Nevertheless, the future of Spark is quite bright, with expectations of having better features in machine learning, better performance, integration with other data sources, and the development of new features in cloud computing. More comprehensive language support, single/multiple clusters, more cluster operations, and growth of the Spark community and Ecosystem will further enhance its importance in big data and AI platforms. Thus, overcoming these challenges and using future progress, Spark will go on to improve and offer improved and more efficient solutions in different activities related to data processing and analysis.

References

  1. Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., ... & Zaharia, M. (2015, May). Spark SQL: Relational data processing in Spark. In Proceedings of the 2015 ACM SIGMOD international conference on management of data (pp. 1383-1394).
  2. Dwivedi, Y. K., Sharma, A., Rana, N. P., Giannakis, M., Goel, P., & Dutot, V. (2023). Evolution of artificial intelligence research in Technological Forecasting and Social Change: Research topics, trends, and future directions. Technological Forecasting and Social Change, p. 192, 122579.
  3. Elshawi, R., Sakr, S., Talia, D., & Trunfio, P. (2018). Extensive data systems meet machine learning challenges: towards big data science as a service. Big data research, 14, 1-11.
  4. Ksolves Team (2022). Apache Spark Benefits: Why Enterprises are Moving To this Data Engineering Tool. Available at: https://www.ksolves.com/blog/big-data/spark/apache-spark-benefits-reasons-why-enterprises-are-moving-to-this-data-engineering-tool#:~:text=Apache%20Spark%20is%20rapidly%20adopted,machine%20learning%2C%20and%20fog%20computing.
  5. Nelamali, M. (2024). Different types of issues while running in the cluster. https://sparkbyexamples.com/spark/different-types-of-issues-while-running-spark-projects/
  6. Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., ... & Hluchý, L. (2019). Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artificial Intelligence Review, 52, 77-124.
  7. Pointer. K. (2024). What is Apache Spark? The big data platform that crushed Hadoop. Available at: https://www.infoworld.com/article/2259224/what-is-apache-spark-the-big-data-platform-that-crushed-hadoop.html#:~:text=Berkeley%20in%202009%2C%20Apache%20Spark,machine%20learning%2C%20and%20graph%20processing.
  8. Sewall, P., & Singh, H. (2021, October). A critical analysis of Apache Hadoop and Spark for big data processing. In 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC) (pp. 308–313). IEEE.
  9. Simplilearn (2024). The Evolutionary Path of Spark Technology: Lets Look Ahead! Available at: https://www.simplilearn.com/future-of-spark-article#:~:text=Here%20are%20some%20of%20the,out%2Dof%2Dmemory%20errors.
  10. Tang, S., He, B., Yu, C., Li, Y., & Li, K. (2020). A survey on spark ecosystem: Big data processing infrastructure, machine learning, and applications. IEEE Transactions on Knowledge and Data Engineering, 34(1), 71-91.

0 人喜欢

Comments

There is no comment, let's add the first one.

弦圈热门内容

关于中国教育的根本问题

关于中国教育的根本问题。还是听听两个外国人的一针见血。给大家介绍两个德国人。第一个,名叫西洛特,最近因对中国教育的一番控诉刷爆了中国的互联网。他在苏州一所私立学校当外教,一干就是八年,但春节前,他离职回国了。他是带着挫败感离开的,他说:“我一辈子也无法在中国看到真正的教育!”他在中国看到4岁的孩子背诵拼音,5岁的孩子做加减法。而在德国,8岁的孩子只需要会播种,栽花,除草。从幼儿园起,中国的学生就不断被灌输政治教育,这些对几岁甚至十几岁的孩子来说,简直是天书,就连很多政治老师也搞不懂,这些教育的功能只是为了应付试卷上的标准答案,别无用处,大多数学生的学习目标也是短暂的——为了考试。与此同时,人性教育、逻辑教育却是空白。人性是人格的基础,缺乏人性体验和认识的人,又怎么形成健全的人格呢,连健全的人格都没有,又拿什么爱自己,爱家人,爱社会呢?西洛特还认为,中国教育的扭曲还体现在安全教育方面。很多学校实行的是无缝对接管理,从学生进门到出校门,每一分每一秒都有老师看着,下一个老师不到,上一个老师不能离开。就像看管羊圈一样。放学时,离学校不足50米的地方,是密密麻麻的家长及形形色色的车辆。孩子到家后 ...

为何似乎中国大学教育那么烂,却在科技上看似大有成就?

体制老司机​的回答:中国的教育没那么烂。杨振宁对中国教育讲过一段话,大意是:中国的教育模式,对大多数90分以下的学生,是非常好的,能让这些学生更快地成材。美国的基础教育太过注重个性发展,非常的松散,如果不是很优秀的孩子,在美国的教育环境里,容易放任自我,养成一些不良习性。而本身很优秀的孩子,也就是90分以上的孩子,在美国的教育环境里面,反而能够发挥出自己的特长,取得人生的成功。杨振宁这段话比较委婉地批评了,中国的教育,对于那些最优秀的孩子成长,是不利的,对这些人还是不够尊重其个性和自由。所以,中国的教育,能培养出世界上数量最多的基本素质不错的产业工人,也能培养出世界上最多的工程师等中高端人才。但是,中国在最最顶尖的人才教育培养上,和美国等西方最先进的国家相比,还是有明显的差距的。因此,中国的制造业全世界第一,电子产品、玩具服装,以及什么高楼大厦、铁路公路、大水坝等基建工程建设,大型机械等等,都是世界数一数二的。但毫无疑问,在非常基础的科学研究方面,比如物理、化学、数学等等,和英美差距还是较大。在非常尖端的技术上,也有很大的差距。比如说光刻机、芯片、材料等等。杰克马也讲过一段话,大致意思 ...

弦圈如何完成新手任务和每日任务 - 任务中心介绍

在弦圈你可以完成新手任务和每日任务,然后获得任务奖励。如何进入任务中心界面呢?首先进入个人中心接着在左侧菜单栏,点击任务中心这时我们就能看到新手任务和每日打卡任务。新手任务,顾名思义是给刚注册弦圈的用户准备的一次性任务,目的是让他快速熟悉弦圈的各个功能和板块。每日打卡任务,就是每天都可以完成一次的任务,希望能够给弦圈的用户一种真实的成长的感觉,让大家使用弦圈能够有更多的正反馈。需要注意的是,新手任务完成后,需要前往任务中心领取奖励,而每日任务完成后,奖励会自动发放,无需每次都前往任务中心。

数学圈小众中的小众

运营弦圈这么长时间,我终于发现一个事实就是:小众圈子千千万万,而数学圈则是小众中的小众,才是真正的小众😎!对于这句话是不是有种熟悉的感觉:20世纪代数几何天才很多,但上帝只有Grothendieck一个。😇由于目前弦圈的人气比较低,并且经过我多次艰难的尝试,效果都挺一般,短期内看这个问题应该不太能改善。毕竟我只是个没钱没人脉的普通人,唯有一腔热血😅。但这不影响我的决心和计划,我想要给弦圈引入更多的小众圈子,让大家能够鉴赏更多的小众文化,这种理念是来源于数学的。在我看来,数学是包容的,能够将宇宙万物都融入其内,因此数学文化是开明的,能够跟无数其他文化相互交织,从而碰撞出火花。在是否存在人类大脑永远无法理解的数学结构?这篇文章中,我曾提到宇宙能否完全被数学所解释是一个理念之争,而我所持的观点即是爱因斯坦的那种,所有的一切都能被简洁、美妙、优雅的数学所描述。在了解了很多的圈子,尤其是小众圈子,以及跟不少数学圈外的人交流后,我才发现似乎很难找个一个比数学圈更小众的圈子。大家都说数学+学术实在是太小众了。在我这个沉浸于数学圈多年的人看来,很多其他所谓的小众圈子一点都不小众,比如说二次元圈、铁路迷 ...

读完了大学依然是社会的底层,那读书的意义是什么呢?

从小学开始到大学毕业,整整16年,读书可以说贯穿了我们每一个人最青春的时候。然而相信很多人都大学以后都会感悟到,自己回学校读书仅仅只是为了一个毕业证,平时要辛辛苦苦的上课,完成各种作业以及学校的要求。结果最后有用的东西没学到多少,时间却浪费在了诸多琐事当中,详细见 中国当前的教育最缺少什么?于是我们不经会想,既然读完书还是底层,还得受社会的毒打,那还读书来干嘛,不如早早的进社会赚取?其实读书对于普通人,尤其是我们底层人而言,好歹也算是条相对公平,且看得到头的出路。对于底层人来说,相对于搞科研、创业、投资等其他出路,读书风险较低、且付出努力能有一定收益。你想想看,如今很多人都觉得读书努力不一定有回报,那更何况其他的出路,风险更是直线上升,所有付出打水漂都算轻的了。除了是一条出路,读书也是教育的一种方式,能让你学习并掌握未来工作生活所需要的某些技能,这无疑有利于你毕业之后的就业问题(虽然学校在培养工作技能方面差强人意)。而且在学校也意味着有很多可能,你可以利用学校的资源去完成一些单独个人完成不了的事情,比如说现在很火的AI大模型,训练一次模型,单单是买GPU就不知道得花多少钱,而且还需要有 ...

如果缸中之脑是真的,那么人就能通过意念改变物质世界?

自从知道“缸中之脑”这个无比形象的词语后,我就对思考这个问题充满了兴趣。所谓缸中之脑是指一个邪恶科学家将一个人的大脑剥离出来,然后放进营养液中,接着通过计算机连接大脑,给大脑发送电信号,让他误以为自己活在某个世界里。这是一个思想实验,该实验的基础是人所体验、感受到的一切都最终会转化为大脑中的神经信号。换句话说,人的对外界的感知是间接的,并不是直接的,而这个间接的桥梁正是大脑的神经信号。这个实验前提可以用不太严格的数学形式表示。假设外界构成一个集合$A$,所有神经信号构成一个集合$B$,大脑世界构成一个集合$C$,那么我们有这样一条公理:公理. 对于任意$B, C$,都存在一个满射$f: A\rightarrow B$,且$B$与$C$之间至少存在一个一一对应$g: B\xrightarrow{\sim} C$。即$C$同构于$A$的一个子集$\widehat{A}$。因此,我们有以下论证:因为缸中之脑和头颅中的大脑接收一模一样的信号,而且这是他唯一和环境交流的方式,从大脑中角度来说,它完全无法确定自己是颅中之脑还是缸中之脑。如果是前者,那它的想法是正确的,他确实走在大街上或者在划船。如 ...

想要实现永生不太可能,但实现长生却是有可能

实现永生可以说是人类祖先的共同梦想,古代中国有秦始皇求长生不老,而各国的宗教也有关实现永生的典籍,可以说实现永生是人类的终极目标。不过在当今大部分人看来,实现永生不过是痴心妄想,然而即便如此,关于延寿的科学研究却依旧在紧锣密鼓的进行,并持续有大量的资金涌入。原因很简单,实现永生不太可能,但是人类却是可以实现长生。自大爆炸理论成为主流科学界所认为的宇宙诞生的方式,至今我们仍不知道未来宇宙究竟会以哪种方式消亡,科学家为此提出了多种猜想(见宇宙的最终结局会是什么?宇宙命运结局的三种假说)。但主流观点仍然是:自这个宇宙诞生以来,所有的事物包括宇宙本身都不可避免的走向死亡。这个世界上不存在不朽的事物,所有事物都会有其消亡的一天。因此,想要永生已经不是寿命能不能比宇宙更长的问题了,而是人类如何在宇宙最后毁灭的时候逃出这个宇宙。宇宙的边界是什么?宇宙的外面是什么?多元宇宙真的存在吗?这些问题直到现在都没有确切答案(参考宇宙无边还是有边?如果人类达到宇宙边界,会发生什么恐怖的事?与宇宙是否真的存在尽头?宇宙边界之外是什么呢?),如果宇宙外面有东西还好,逃出去至少还有一丝希望,而如果宇宙外面是一片虚无, ...

Android Studio安装教程 - Windows版

如果你想要开发Android应用,那么Android Studio往往是必不可少的,其包含Android开发所需要的环境,即便你不打算用Android Studio进行开发,也需要先安装配置好它。首先打开Android Studio中文官网进行下载:https://developer.android.google.cn/studio?hl=zh-cn,下载速度亲测可以,作者今天下载时速度甚至达到了60MB/s。点击下载Android Studio xxx,接着会弹出下载Android Studio的条款及条件。勾选同意后,点击下载Android Studio xxx开始下载。下载完后打开安装包,然后点击Next继续点击Next接着选择好你的安装位置,继续点击Next现在点击Install开始安装耐心等待安装完成安装完成后,点击Next然后点击Finish完成安装等待Android Studio打开。这时会弹出这个收集数据的东西,点击Don't send😎接着进入到Android Studio Setup Wizard的界面,这时如果弹出下图错误,直接点击Cancel即可然后点击Next ...

(✅已修复)弦圈编辑器上传图片已知bug,未知原因导致上传图片模糊

这是个很早之前就存在的bug了,一直都没解决,并且我也不知道具体是什么原因。原本这个bug也只是偶尔发生,已经有很长一段时间没有再遇过了。结果今天我写Android Studio安装教程 - Windows版这篇文章的时候,又遇到这个问题了。刚刚上传前面几张图片的时候一切正常,直到上传最后几张图片时,我发现上传的照片又很糊了,并且无论上传多少次,按多少比例截图,最后结果都一样。而且无论是复制来的图片,还是直接上传图片,都一样。见下面几张图这些图片都是原图很清晰,但上传后就很糊了。目前已确定问题发生在Django后端,具体原因仍在排查当中......更新:经过排查,确定问题跟图片模型有关系,我使用了django-resized的ResizedImageField来将上传的图片转化为webp格式。一般正常使用都是没事的,但是有些时候上传图片的次数多了以后,就会出现这种bug。为什么会出现这个问题,即便我看过django-resized源代码也不清楚,搞不好是pillow的问题?但我觉得应该跟它无关。最后我将ResizedImageField改回了ImageField,然后自己用pillow ...

智力等级体系:天才与超级天才 | 智力修仙

现实中等级体系这个东西非常常见,可以说深深刻在每个人心中,影响着整个社会的运作。数学圈中所谓的鄙视链,即可看作一种等级体系。而在修仙小说中,元婴、化神等各个境界的划分,也是等级体系的一种。这些等级体系其实都是有尽头的,并不是无限往上的,即存在一个最高等级。由于很多修仙作品无限套娃的境界,这让人误以为这是一种失衡的等级体系,或者压根就不能算等级体系。实际上正统的神话中,境界是有尽头的,众神中也存在着最高神。为什么等级体系一定会有最高值,或者说是否等级体系一定会有最高值,这个问题倒是挺有意思的,不过这并不是本文要讨论的重点。我们这次要讨论的是智力的等级体系,这是相较于其他等级体系较少被提及的,即便被提及也没有清晰的划分,定义一般比较模糊且不同人之间差异性较大。本文我们要像小说一样,建立一个完整的智力等级体系,毕竟想要理想上完善这个体系,就必须要考虑到一些超现实的东西。关于智力的度量与划分,基本上都离不开智商这个概念,智商其实就是智力测试的分数。我们首先从智商出发,给出智力等级体系的一个版本。每一级相差30分,意思是上一级的智力跟下一级相比就跟普通人一样。而每一级分为初期、中期、后期、巅峰, ...

回顾经典 - 使命召唤5僵尸模式mod 我的世界

在上一篇文章回顾经典 - 使命召唤5僵尸模式mod 海绵宝宝中,我们介绍了COD5的一个趣味MOD-海绵宝宝。今天我们来介绍一下另一个趣味MOD-我的世界😁。该MOD包含的场景有村庄、地堡、地狱、末地,并且除了普通的Nazi僵尸,还有末影人、烈焰人、末影龙。然后还将一些COD其他系列的武器和饮料搬到这里,还有嚼糖果。该MOD可以通关,通关流程跟MC通关流程一致,即拿到黑曜石打开地狱传送门,前往地狱打烈焰人活得烈焰棒,杀末影人得末影珍珠,回主世界合成末影之眼,前往地堡激活末地传送门,前往末地打败末影龙。该MOD除了MC这种地图外,还有多个其他地图,地图的背景和规则各不相同。当然可玩性最高的还是MC村庄这张地图。除此之外,你可以选择多个游戏难度(solo difficulty): beginner, easy, normal, hard, veteran,难度越低开局初始钱越多,僵尸数量越少,僵尸血量越低,僵尸速度越慢。默认难度是normal,对作者这种萌新而言并不简单,还是beginner舒服😃。并且你还可以修改游戏模式(solo gamemode):original - 正常的僵尸模式 ...

关于弦圈APP帖子附件的下载路径

之前弦圈APP的附件下载路径出现了问题(✔已修复)弦圈APP下载附件功能存在问题,目前暂时无法修复。如若需要下载附件,请先用Web端,现已被修复。现在所有的附件下载完后,都会放在/storage/emulated/0/Documents/Manitori这个文件夹里。需要注意的是,附件下载完后并不会显示在手机的“最近”页中,需要你自行使用文件管理器打开下载路径。 按理来说Documents的意思是文档,里面应该就是专门存放pdf这些文件的,结果却不显示在“最近”页中,也不知道开发手机的是怎么想的😅。不过这是符合某些用户的心意,他们不希望自己下载的东西显示到“最近”,甚至想直接关掉“最近”页。接下来我就给出如何找到下载附件的一个教程吧,防止用户找不到下载的文件。首先在手机桌面找到这个图标的文件打开,如果没有这个图标的文件,可以尝试找名称,见下面这个文件的名称就是文件管理器打开文件管理器后,点击中间的“手机”,然后找到Documents文件夹,打开后找到Manitori文件夹,然后打开即可

这么多个搜索引擎就必应对弦圈最好了,谈谈弦圈过去的SEO经历

早在2024年4月4日弦圈上线之日,我就开始做弦圈的SEO优化,这期间免费付费手段都用过,效果也是起起伏伏。我并不是SEO方面的专家,这篇文章仅仅只是将我过去做SEO的经历说一下,以解释为什么最后我放弃SEO。目前说到SEO优化,一般涉及的就是三大搜索引擎谷歌、百度、必应。其中谷歌全世界体量最大,百度国内体量最大,必应体量没前两者大。如果不考虑国外互联网,仅考虑国内的话,从趋势上看,谷歌对中文互联网不管不顾趋于平稳,百度则正在衰落,而必应则正在增长。在中文互联网中与SEO优化相关的内容,一般说的都是百度SEO或者谷歌SEO,然后大家一致的声音都是百度不行,谷歌行。但网络上的信息往往都有滞后性,加上我是从零开始学习SEO相关知识,总之我持续花了好几个月专攻谷歌SEO,最后都没啥效果。为什么只做了几个月,因为我当时还没大学毕业但也快了。而网上那些所谓的SEO本来就慢,至少一年才有效果等等,在我看来都是p话,先不说我耗不起这样的时间,其次做了那么久那个曝光曲线还是差不多这样,根本没有上升的趋势,我不相信坚持到某天它会突然一飞冲天。期间我试过自己按照网上的教程(国内外的教程都试过),写原创内容 ...