··
146
·
2025-04-14 10:53

面具下的自我:《西力传》中的个体困境

来自 热心市民年糕先生 的 投稿 :


1983年,伍迪·艾伦执导的虚构纪录片《西力传》上映后立即引发轰动。简单来说,主人公莱昂纳德·西力是一个特殊的人,他能够根据周围环境迅速改变自己的外表和性格,成为一个“完美的镜子”,反射周遭人的一举一动。他就像一根柔软的芦苇,随环境风吹草动。


01#


理想自我的困境


西力的“特殊能力”恰恰凸显了普通人在社会生活中也面临的困境:我们时常会为了讨好他人、获得认同而隐藏内心的真实想法,扮演一个“理想的自我”。我们会在不同的社交场合下带上各式各样的“面具”,以适应环境期待。然而区别在于,西力已经把这种现象发挥到了极致——他看似拥有百变的人格,实则丧失了独立的自我。西力的人格是如此脆弱不堪,以至于最微弱的环境变化都能引发他的改变。他就像海绵一样吸收周围的特征。这似乎揭示了一个令人不安的事实:我们的自我认同其实并不如想象中那样坚固,它极易受到外在力量的影响和操纵。


02#


one?

A面。从社会学的角度看,个体之所以会产生强烈的"他者依赖",在于个体需要通过社会互动建立自我认同。

正如符号互动论者米德所言,个体的自我意识来源于他人对自己的定义和期待。个体通过扮演社会角色获得认同感。

所以,《西力传》中的主人公西力作为一个性格迷失和自我认同缺失的个案,恰恰反映了个体在社会中建构自我认同所面临的困境:在一个瞬息万变、信息爆炸的时代,我们很难找到一个稳定和持续的角色来定义自我。个体的自我认同成为一个持续演变的"过程",而非定型的"产品"。的确,在传统社会,个体的社会角色和身份相对固定和单一。但在当今开放而多元的社会,个体需要在诸多身份之间转换,这使得自我认同变得流动和复杂。比如在职场中,同一人可能同时具有员工、经理、客户等多重身份;在网络中,个体也会扮演着各种虚拟角色。这种角色的多重性给个体的自我认知带来了冲击。但是,正如电影结尾西力所说的那样,我们始终无法完全摆脱自己的本质,无论我们如何尝试改变自己的外表和性格,内心的真实自我总是存在的。



03#


another one?


B面。从存在主义角度看,这可能与他内心对本质的否定以及对存在的主观赋予有关。存在先于本质,人存在于一个没有本质含义和目标的世界里。每个个体需要通过主观选择,赋予自己的生存意义。而西力正是通过频繁地变换自己的外在形象,不断地改变并融入各种群体,来寻找内心对存在的认同,因为从内心深处,他都无法找到一个固定的自我认同,无法确立一个稳定的价值观使他的存在获得意义。只能不断地通过模仿和变换,去试图从外在环境和他人身份中寻找内在的归属感。就像萨特所说,人是自由的,在一个没有他赋予之前便没有意义的世界中使用自己的主观选择能力。



04#


结语


人难以建立一个稳定的本质自我性质。医生曾多次试图通过心理治疗和实验,揭示出西力个性中的固定成分,然而一次次都以失败而终。也正是因为无法建立一个稳定的自我概念,西力才会感到深深的存在的孤立与焦虑,他内心对自身存在本质的否定,是源于无法在这个充满无性与选择的世界中找到内心的归宿。这也是他变换外表的动机之一。

西力的近乎病态的顺从性格,使得他能够变成周围人需要他成为的样子,只为迎合别人的期待,即个体面临的来自社会规范和体制的约束。他内化了“我不值得被接纳”的负面观念,因此必须依靠取悦他人来获得认同感。这种顺从来源于西力内心的创伤和对自己的否定,但同时也反映了社会环境的影响——正如杜尔凯姆所说,个体具有一种“外部强制内化为内部规范”的特点。

个体并不是完全自发遵循社会规范,而是因为内化了外部约束,从而自觉地进行自我调控。西力把周遭人的期待和观念完全内化为自己的规范,导致了他丧失了真正的自主权——他的行为完全由外部环境决定。法西斯主义之所以能完美地捕获西力,是因为它提供了宏大的集体认同感和行动方向,同时也模糊了个体的独立性和责任——自我已经被消解了,也就不存在“迎合”一说了。在法西斯集会上,西力完全丧失自我,沦为集体暴力的工具。



《西力传》是伍迪艾伦自导自演的喜剧。


0 人喜欢

Add a comment
Comments

There is no comment, let's add the first one.

弦圈热门内容

Atiyah交换代数经典入门教材:Introduction to Commutative Algebra

在上帖中,我分享了Zariski的交换代数教材:Zariski交换代数经典教材Commutative Algebra系列(pdf可复制版)。其实交换代数方面,除了Zariski的教材,还有Atiyah的Introduction to Commutative Algebra,以及Matsumura的Commutative Ring Theory可以作为交换代数的入门教材。Atiyah的教材是这三本教材中最简单的,Zariski的教材虽然很完备,但是篇幅过长,而且内容太过经典了,没有Atiyah的教材那样更加贴近新时代。而Matsumura的教材篇幅要比Atiyah的长一些,而且似乎感觉Atiyah的表达更加通俗易懂一些,毕竟Atiyah是众所周知的大师级人物。下面我们来回忆一下Atiyah的一些人物轶事。Atiyah作为与Serre齐名的伟大数学家,他最著名的工作即是与辛格一起证明了指标定理(Atiyah-Singer Index Theorem)。而Atiyah也与Grothendieck关系匪浅,见下图😁而Atiyah对物理也同样非常感兴趣,他与很多物理学家合作研究过,包括知名的唯一 ...

Matsumura交换代数入门教材:Commutative Ring Theory

在前面两帖Zariski交换代数经典教材Commutative Algebra系列(pdf可复制版)和 Atiyah交换代数经典入门教材:Introduction to Commutative Algebra 中,我分享了Zariski和Atiyah的交换代数教材。在本帖中,我把Matsumura的教材也分享出来。在这里我重新回顾一下这三本教材的区别。首先,Zariski的教材很完备,但是篇幅过长,而且内容太过经典了,没有另外两本那么与时俱进。因此Zariski的教材更加适合作为交换代数的词典用于查阅。当然如果你不需要按部就班从头到尾的看完一本书,Zariski的教材选择性的跳着看,完全可以作为入门教材。我高中的时候就是看Zariski的教材的。Atiyah的教材是这三本教材中最简单的,也是篇幅最短的。而Matsumura的教材篇幅要比Atiyah的长一些,并且Matsumura的教材有一些Atiyah中没有的概念,因此也值得一读,不过Atiyah教材的表达要更加通俗易懂一些。因此,我的建议是三本教材都读一读,但没必要全部看完,把需要掌握的基础概念都掌握了就行。读文献时有些术语找不到, ...

记录一下知乎问题《你的编程能力从什么时候开始突飞猛进?》

自从我为了完成毕设而开始全栈写网站,我的编程能力就跟打了鸡血一样,我做梦都没想到自己居然能写出一个像样的网站 弦圈 - 找到属于你的圈子 (manitori.xyz)(不喜勿喷)。原本我是个对编程一窍不通的人,我只对数学感兴趣,对编程可谓是不屑一顾,每次上编程课,我都在下面摸鱼看数学的内容。课后作业以及大作业,要么是CV缝合弄好的,要么就是等别的同学写完直接拿一份抄来应付的。直到后来,我得知毕业的时候只能写毕业设计,不能写纯数学方面的毕业论文,我感觉天都塌了。在距离答辩还有一年的时间里,我某天突然突发奇想的想找些项目来写写玩玩,于是就是梦开始的地方。我第一次接触到了开发网站这个东西(虽然这玩意已经存在很多年了),知道了Vue.js,接着知道了用Python可以做后端,然后就开始上手写个前后端分离的网站。刚开始我也只是随便写写,能应付得了毕设就得了。可是写着写着,我发现自己对编程越来越感兴趣,同时也越写越顺手、越熟练。然后我就开始没日没夜的写,最后经过六个月的开发,第一个网站 弦圈 - 找到属于你的圈子 (manitori.xyz) 于今年4月4日终于上线了。关于编程,我感觉是只有你真正 ...

我们的宇宙并不是由纯数学构成的

在理论物理学的前沿,许多最流行的想法都有一个共同点:它们都从一个数学框架开始,这个框架试图解释比我们目前流行的理论更多的东西。我们目前的广义相对论和量子场论框架在它们所做的事情上很出色,但它们并不是万能的。它们从根本上是不相容的,不能充分解释暗物质、暗能量,也不能充分解释为什么我们的宇宙充满了物质而不是反物质,以及其他谜题。数学确实使我们能够定量地描述宇宙,如果应用得当,它是一种非常有用的工具。但宇宙是一个物理实体,而不是数学实体,两者之间有很大区别。这就是为什么单靠数学,我们永远不足以得出万物的基本理论的原因。16 世纪最大的谜团之一是行星如何以逆行的方式运动。这可以通过托勒密的地心模型(左)或哥白尼的日心模型(右)来解释。然而,要获得任意精度的细节需要我们在理解观察到的现象背后的规则方面取得理论进展,这导致了开普勒定律和牛顿的万有引力理论。大约 400 年前,一场关于宇宙本质的争论正在展开。几千年来,天文学家一直使用地心模型准确描述行星的轨道,在这个模型中,地球是静止的,其他所有物体都围绕着它旋转。借助几何数学和精确的天文观测——包括圆、等距圆、均轮和本轮等工具,天体轨道的精确数学 ...

为什么可能没有体积的量子所组成的物质却有体积?

当你测量和观察周围的宇宙时,有一件事是可以肯定的:你看到、触摸到并以其他方式与之互动的物理对象都占据了一定的空间体积。无论是固体、液体、气体还是物质的任何其他形态,它都需要消耗能量来减少任何有形物质所占的体积。然而,看似矛盾的是,作为物质的基本成分,标准模型的粒子却根本没有可测量的体积;它们只是点粒子。那么,由无体积实体组成的物质如何占据空间,创造出我们所观察到的世界和宇宙呢?让我们从我们熟悉的事物开始,一步步分解,直到我们深入到支撑我们存在的量子规则。最后,我们可以从那里开始逐步向上。上图显示了对应于电磁波谱各个部分的尺寸、波长和温度/能量尺度。你必须使用更高的能量和更短的波长来探测最小的尺度。紫外线足以使原子电离,但随着宇宙的膨胀,光会系统地转移到更低的温度和更长的波长。如果你想了解体积,那么你必须了解我们测量物体大小的方式。确定宏观实体大小的方式通常是将其与已知大小的参考标准进行比较,例如尺子或其他测量棒。或者测量弹簧(或类似弹簧的物体)因该物体而位移的力、测量光穿过物体跨度所需的传播时间,甚至通过用特定波长的粒子或光子撞击物体的实验反馈来进行确定。正如光具有由其能量定义的量子力 ...

波尔兹曼大脑:宇宙中漂浮着至少7万5千亿亿亿个意识体

在这个广袤无垠的宇宙中,我们总爱幻想自己独一无二,是万物之灵。但你知道吗?根据某个奇妙的科学理论,你、我,甚至整个地球,可能都只是宇宙中随机“涨落”出来的一个意识体——没错,这就是让人脑洞大开的“玻尔兹曼大脑”假说!熵增定律:宇宙为何越来越“乱”?你的房间如果不打扫,是不是会越来越乱?这就是“熵增定律”在生活中的体现。简单来说,熵就是系统混乱程度的量度,而熵增定律则告诉我们,一个孤立系统的熵总是趋向于增加,直到达到最大化,也就是系统变得最混乱。宇宙,作为一个巨大的孤立系统,按理说也应该遵循这一法则。但奇怪的是,我们观测到的宇宙,似乎是从一个极其有序、熵极低的状态开始的。这,是为什么呢?玻尔兹曼的“脑洞”:宇宙其实是个“随机播放器”?这时,奥地利物理学家路德维希·玻尔兹曼登场了。他提出,熵增定律其实是统计性的,就像抛硬币,虽然正面朝上的概率是50%,但在无限次抛掷中,正面和反面出现的次数会趋于相等。同样,宇宙在大部分时间处于高熵态,但无限的时间尺度上,偶尔也会有“小概率事件”发生,即熵的随机涨落导致低熵态的出现。换句话说,我们现在所看到的这个有序、低熵的宇宙,可能只是一次“宇宙级”的随机 ...

Jürgen Jost黎曼几何与几何分析教材:Riemannian Geometry and Geometric Analysis

这本书是几何分析方面的入门教材,该教材先从最基本的黎曼流形讲起,然后逐步深入到李群和向量丛,接着到联络与曲率,基本上覆盖了几何分析很多重要的基础概念。这本书需要有一定的微分几何基础以及分析、李群等相关领域的基础,初学者谨慎使用。我高中的时候,就是对这本书的内容感兴趣,想要尝试理解,结果看到测地线就不懂了,接着后面看了点李群和向量丛就没再看了。建议先读Loring W Tu的两本微分几何教材Loring W Tu微分几何经典入门教材:An Introduction to Manifolds和Loring W Tu微分几何教材:Differential Geometry Connections, Curvature, and Characteristic Classes,有了一定的基础再专研Jürgen Jost的这本教材。我毕竟不是做微分几何的,所以关于这方面的就不说太多了。PS:作者不再提供附件下载。

Loring W Tu微分几何教材:Differential Geometry Connections, Curvature, and Characteristic Classes

在上帖Loring W Tu微分几何经典入门教材:An Introduction to Manifolds中,我提到高中时期,我为了看懂Jürgen Jost的几何分析教材Riemannian Geometry and Analysis,转而看Loring W Tu的An Introduction to Manifolds以及Differential Geometry Connections, Curvature, and Characteristic Classes。这本教材可以说是An Introduction to Manifolds的后续,建议先看一下An Introduction to Manifolds有了流形的基础,再看这本Connections, Curvature, and Characteristic Classes。本书开始就直接先从黎曼流形开始讲起,接着就讲曲率、联络这些微分几何进阶的重要基本概念。这也是为什么当初我会选择看这本书,因为这些内容刚好有助于我理解Riemannian Geometry and Analysis这本教材的内容(记得当时看到测地线就看不 ...

素数在整数整环中还是素的吗?

我的提问:一个整环$R$中的元素$p$是素的,如果$p$不是零或者一个单元,并且$p|ab$意味着$p|a$或者$p|b$(等价的$ab\in Rp$意味着$a \in Rp$或者$b\in Rp$)。一个整环$R$的元素$q$是不可约的,当$q$不是零或者一个单元,并且$q = ab$意味着$a$或$b$是一个单元。那么素数在整数整环中是素的吗?然后素数都是不可约的吗?回答1:这两个问题的都是对的。根据基础数论的事实,$\pm 1$是唯一可逆的整数,除$\pm 1$以外的整数可以唯一地表示为不同素数的乘积加上$\pm$,每个素数的幂都是正整数,这两个结果都很容易得到。回答2:素数在整数整环中既是素的,也是不可约的。根据定义,它们就是不可约的。为了证明它们是素的,请回顾一下欧几里得算法,该算法用于找到两个整数的GCD(并同时证明任意两个整数都有一个在等价意义下唯一的GCD,其中并不涉及素数的分解)。根据欧几里德算法可以得出,如果$d=\gcd(a,b)$对两个整数$a,b\in\mathbb Z$,则存在整数$u,v\in\mathbb Z$使得$d=ua+vb$。(贝祖特性。)现在, ...