·

素数在整数整环中还是素的吗?

发布时间:2024-11-28 22:12:22阅读量:189
转载请注明来源

我的提问:

一个整环$R$中的元素$p$是素的,如果$p$不是零或者一个单元,并且$p|ab$意味着$p|a$或者$p|b$(等价的$ab\in Rp$意味着$a \in Rp$或者$b\in Rp$)。一个整环$R$的元素$q$是不可约的,当$q$不是零或者一个单元,并且$q = ab$意味着$a$或$b$是一个单元。

那么素数在整数整环中是素的吗?然后素数都是不可约的吗?

回答1:这两个问题的都是对的。根据基础数论的事实,$\pm 1$是唯一可逆的整数,除$\pm 1$以外的整数可以唯一地表示为不同素数的乘积加上$\pm$,每个素数的幂都是正整数,这两个结果都很容易得到。

回答2:素数在整数整环中既是素的,也是不可约的。

根据定义,它们就是不可约的。

为了证明它们是素的,请回顾一下欧几里得算法,该算法用于找到两个整数的GCD(并同时证明任意两个整数都有一个在等价意义下唯一的GCD,其中并不涉及素数的分解)。根据欧几里德算法可以得出,如果$d=\gcd(a,b)$对两个整数$a,b\in\mathbb Z$,则存在整数$u,v\in\mathbb Z$使得$d=ua+vb$。(贝祖特性。)

现在,想象$p$是普通意义上的一个质数,意味着它是不可约的。假设$p|ab$,然后令$d=\gcd(p,a)$$d=up+va$。因为$d|p$,(从不可约性)可以得出,要么$d$是单元,要么$d$等价于$p$,因此我们能将$d,u,v$与一个单元相乘,将其缩减到到$d=1$或者$d=p$的情况。

  • 如果$d=1$,那么$1=up+va$,即$b=upb+vab$并且右侧可被$p$整除,所以$p|b$
  • 如果$d=p$,其中$d=\gcd(p,a)|a$,于是我们有$p|a$

在一个一般的整环$R$中,素就意味着不可约。相反的蕴含关系是有效的每当$R$是一个欧几里得整环(即它在某种意义上允许欧几里德算法),或者如果它是一个主理想整环(即每个理想都是主的——由单个元素生成),或者它是一个贝祖整环(即每两个主理想之和是一个主理想)——证明与$\mathbb{Z}$的情形是相同的。

原文地址:Are the prime numbers prime in the domain of integers?

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

数说心语 | 一直在出发

数说心语#一直在出发#亲爱的同学们你是否因为昨日事务的束缚明天前途的焦虑而停下了当下探索的脚步在此数院团学君为同学们推荐汪国真先生的《我喜欢出发》愿大家不要失去随时出发的勇气《我喜欢出发》汪国真我喜欢出发。凡是到达了的地方,都属于昨天。哪怕那山再青,那水再秀,那风再温柔。太深的流连便成了一种羁绊,绊住的不仅有双脚,还有未来。怎么能不喜欢出发呢?没见过大山的巍峨,真是遗憾;见了大山的巍峨,没见过大海的浩瀚,仍然遗憾;见了大海的浩瀚,没见过大漠的广袤,依旧遗憾;见了大漠的广袤,没见过森林的神秘,还是遗憾。世界上有不绝的风景,我有不老的心情。我自然知道,大山有坎坷,大海有浪涛,大漠有风沙,森林有猛兽。即便这样,我依然喜欢。打破生活的平静便是另一番景致,一种属于年轻的景致。真庆幸,我还没有老。即便真老了又怎么样,不是有句话叫老当益壮吗?于是,我还想从大山那里学习深刻,我还想从大海那里学习勇敢,我还想从大漠那里学习沉着,我还想从森林那里学习机敏。我想学着品味一种缤纷的人生。人能走多远?这话不是要问两脚而是要问志向;人能攀多高?这事不是要问双手而是要问意志。于是,我想用青春的热血给自己树起一个高远 ...

你对自己的哪本数学启蒙书印象最深刻?

相信每一个喜欢数学的人,都曾被某几本书中描述的数学内容所深深震撼,从而一发不可收拾的踏上数学这条“不归路”😂。 我至今还记得初三高一的时候,自己第一次看代数几何的那种震撼(GTM52),当时的我涉猎过泛函分析、范畴论、微分几何等数学分支,但唯有代数几何给予我心灵上最大的震撼。 我为代数几何这个艰深、深奥、广阔、神秘的领域所深深吸引,加上当时知道了Grothendieck的事迹,让我下定决心攻克代数几何的重重难关,只为更接近心中的“神”😂。 不知道你的数学启蒙书是哪几本呢?其中哪本书你印象最深刻呢?