·

Atiyah:Commutative Algebra使用攻略

发布时间:2024-12-01 14:32:09阅读量:155
转载请注明来源

刷题刷傻了~

这次是交换代数的经典教材,M.F.Atiyah,I.G.MacDonald的Introduction to Commutative Algebra,以下简称A&M。A&M在知乎上也很有声誉,基本是公认的交换代数入门书。A&M很薄,128页,我大概读了二十余天,习题全部刷完了,觉得相当有收获。难度有,但并没有想象中的大,我完全能接受。A&M几乎绝版了,不过可以去专门进口书店买到,打印也不失为一个好选择。

说起来我本来打算把交换代数放在明年再读的,但恰逢我校大二同学开展了一个交换代数讨论班,用的这本书,并且我导也推荐我现在读,所以大概就是这时候读了。确实感觉时机刚刚好。

A&M是写给上个世纪七十年代的三年级本科生的讲义,很多地方不经雕琢,自成璞玉。形式化风格很是明显,鲜有大段启发性的说明或展示动机,大多是定义,定理,命题,推论的罗列,很“干”。一些证明也比较简洁,用作者自己的话说,他省去了机械的步骤;但相对的,我觉得他重要思路都点到了,真正跳步的地方比较少。我很喜欢这本书,首一的优点,它很薄,且基本的交换代数都覆盖到了,第二,它习题非常优秀,200余道,质量相当高,提示相当到位,谁刷谁知道,是我这种做题家的福音,第三,它的一些在代数几何中的应用不是没有,而是出现在了习题里。所以看这本A&M主要要做习题。

此书可以找到完整答案,相关资源也很丰富,非常友好。我也参考了一些。

勘误不是特别多,可以接受。下面一个链接是mathoverflow上的总结的一些勘误:Errata for Atiyah–Macdonald

我觉得我也没什么好说的,没有什么特别有意思的东西,也许是做个提纲?

下面正式开始:

1.准备知识:

线性代数,抽象代数。环一定要学好,标准的抽象代数教材里环一般分两个专题:唯一分解整环和多项式环,这是一定要熟练掌握的。如果学过一点模的话自然更好,比如主理想整环上有限生成模结构定理什么的,这种结论在此书里也是随意使用,假定掌握了的。域的话用不到Galois理论,但会用到一些正规,可分扩张的概念,问题不大。

范畴论,同调代数。此书没怎么使用范畴论的抽象废话,所以不需要严肃的范畴论。同调代数方面一个是蛇形引理,一个是Tor函子(习题里出现的),不会的话临时补也没有问题。

拓扑学。主要是点集拓扑,知道基本的概念,结论就可以了。这本书里研究的拓扑大多比较奇怪,以至不能从欧氏空间角度直观处理问题,所以回归定义形式地考虑问题,把它当成代数学考虑是最好的选择。

参考书目:

【1】、交换代数与同调代数,李克正

查了一些同调代数知识。

【2】、A Course in Commutative Algebra, GTM256, Gregor Kemper

也是一本入门书,讲得较几何化。

【3】、A Term of Commutative Algebra By Allen B. ALTMAN and Steven L. KLEIMAN

作者用现代语言将A&M重写了一遍,并附上了所有习题解答和索引,天地良心!

2.章节具体介绍:

前三章是最基本的概念,结论,也占了本书将近一半的篇幅。四到九章是更进一步的结果。十、十一章介绍了完备化和维数理论,难度有所升级。

进度大概是每天干十道题,由于章节分布不均,有的要看三天,有的只看了一天。

习题的话页数按章序打一下:8-5-8-5-6-2-5-1-2-3-1(最后一章略了一些细节)总页数46,赶上四分之三本Big Rudin了哈。

第一章 环与理想

我讲了这一章的讨论班,大概花了三个小时。此章引入了一些概念,诸如幂零根基,Jacobson根基什么的。命题1.11是比较重要的,注意有限在代数里的重要作用。Zariski拓扑是在习题里出现的,并且贯穿了以后几乎所有章节的习题,足以显示其重要性。其实这个拓扑是素理想间序关系诱导的拓扑,所以要论证某映射诱导同胚当且仅当它保序,这是个直观的,值得注意的一个点。习题里也介绍了仿射代数簇,多项式映射什么的。我比较喜欢的是题26的结论——这也在Big Rudin里出现过。

第二章 模

主要的对象是正和列、张量积。这一章是可以讲得比较范畴化的,但是它处理的还是比较初等。命题2.4实质是Hamilton-Cayley定理。注意代数的环有限和模有限之不同。习题里也介绍了正向极限。24到28结论比较重要,但需要一点同调代数里Tor函子的基本性质,这些都可以查到,不是很难。

第三章 分式环与分式模

这章介绍了取分式这一操作——这可以与取商环同等地视作交换代数中最重要的两个操作,前者决定出确定理想里的理想,后者则决定出含确定理想的理想。这一过程也被称为局部化,它是非常有意义的,它也可以实现一些局部性质和整体性质间的转化。这一章的习题比较难,有一系列关于平坦,绝对平坦,忠实平坦的定义、判别法,也介绍了一些层的概念。一些习题画交换图会变简单。

第四章 准素分解

处理了准素分解的两种唯一性,作者说这是比较古典的内容了。习题17、18是比较有意思的,稍微用了一点超限归纳。我觉得良序定理,序数和超限归纳配合,是非常有力的工具。

第五章 整性与赋值

整性也是一个非常重要的概念,它本质上是通过命题5.1刻画的,它有将环有限转化为模有限的能力。注意上升定理和下降定理可以用来刻画环的维数,也可以诱导出Zariski拓扑诱导的连续映射的一些性质。赋值环最重要的也许是其理想的全序性吧。习题中出现了Noether正规化定理和零点定理,它们是很有几何意义的,但我个人觉得顺序稍有问题,也许正确的顺序是16,18,17,并且17第一问的陈述也有问题,应该是要证明理想不空时,对应代数簇也非空。

第六章 链条件

介绍了升链条件与降链条件,Noether模与Artin模的一些基本性质。看到这里我觉得可以补充一点模的Jordan-Holder定理什么的。

第七章 Noether环

Hilbert基定理是比较重要的。后半部分建立了Noether环上的准素分解,与第四章呼应,这也表明了含Noether环中理想的极小素理想个数是有限的,这会在第十一章讨论维数时用到。习题里介绍了Grothendieck群,这是一种解决问题的范式,很有意义。

第九章 Artin环

摘引书中一句话,大意是Artin环不是因为其广泛而被研究,而是因为其特殊性而被研究。对它,我们可以将其分解为一些Artin局部环的乘积,这就是Artin环的结构定理。

第九章 离散赋值环与Dedekind整环

离散赋值环实际上相当于局部的主理想整环,而Dedekind整环就是由这些环拼接起来的。还有两种等价刻画,通过特殊的准素分解,或是通过分式理想群。习题里面可能会发现一些类似主理想整环的性质,这是因为那些性质是局部性质,而Dedekind整环每一局部均是主理想整环。这一章的习题貌似要大量使用主理想整环上的有限生成模分解。

第十章 完备化

这一章难度有所提升,幸好我有一点p进数的底子。讲到了逆向极限,大量使用了蛇形引理。习题里提到了很广泛版本的Hensel引理。

第十一章 维数理论

介绍了对Noether局部环维数的三种等价刻画:最长的素理想列,长度决定的特征多项式的次数,极大理想根基意义下生成元的最小个数。这实在是很优美的结论。最后也证明了在代数几何中局部维数与超越维数之统一。

3.总结与建议:

这本书整体还是很代数的,内容也未有过时,一些处理可能不是最好的,但也相当精彩,让人看完后很有体会,可以学到很多。A&M小册子的体量也让我读得十分上头,果然只有小册子才能让我产生一口气读完的冲动。

依我的经验看,通读此书并未出现任何不适。也许它动机不甚明显,但我个人认为环与模本身就是很有意思的结构,一些几何观点能帮助理解自然是锦上添花,严肃的代数几何也许专门去学也行。

希望我能不要忘记我学的,至少要用的时候捡得起才好。

下一本是Fulton的代数曲线,这没有合我年初定的计划,果然计划都是用来打破的哈。正好可以磨砺磨砺刚学的交换代数,今天稍微看了看,好像不是很难,希望能继续效率拉满地学习。



转自知乎用户loong:https://zhuanlan.zhihu.com/p/359651478

0 人喜欢

评论区

暂无评论,来发布第一条评论吧!

弦圈热门内容

作为一个年轻的数学工作者,你们是如何独立于导师选定问题的?

知乎提问:感觉有意思的我做不动,我会做的又无趣(且无人关注)。那请问你们是如何自己选定一个有意思且做的动的问题的?我的回答:想要找问题,首先需要阅读很多相关的文献,但是这一步其实很多人都会做了,他们的问题是哪怕读了再多的文献,似乎也不知道有啥问题可做。其实在我看来原因无非那么几个第一是他们自以为自己掌握了正确的学习方法,看过的文献每一个细节都彻底弄懂弄透了,实际上他们连自己学的东西都没搞明白;第二是他们好高骛远,瞧不起一些比较基本的小问题,却不知道很多重要且有趣的理论往往来自于不经意间一些最简单的问题;第三就是科研能力问题了,这方面要展开太多可讲了,如数学成熟度不够、计算能力不足导致无法将脑海里的理论实现,或是想象力不足无法构想出一个一般性的理论,等等。这三点能做好,基本上就能脱离导师,独立自主做出研究成果了。其中第三点是最体现一个人数学天赋的地方了,不过其也是建立在第一点跟第二点的基础之上的。关于如何学习达到research level的程度,不是一两句话就能简单讲完的,可以参考我之前的文章和帖子,其实只要把第一点做好,且做到极致,第二点只要你调整好自己的心态就能做到。想学好数学不是 ...

基础数学几何方向应该如何学习?

前辈们好,本人是一名大二数学系学生,目前大致了解点集拓扑基本概念(但还没怎么做题),代数拓扑看过基本群和同伦型,复变和抽代这学期正在学。之所以问这个问题是因为之前看到中科大梁永祺老师的主页看到了这样一句话:让我感觉非常奇妙,也想见识一下这精华的部分(希望在大四毕业前能做到吧!😭),也激发了我学习代数与几何方向的想法。其中代数方向其实学习路径了解的差不多了,大致就是学完抽象代数后同调、交换和lie代数都可以学了,但几何方向还不甚了解,很多几何方向的课学校都是大三大四才有,甚至开不出来,因此只能自行学习。这个问题其实之前也问了不少前辈,但发现每个人的学习路径(有的是从微分几何上同调那边学,有的是先接触的代数拓扑等)都不一样,而几何方向又十分繁杂,理不清学习顺序,手头上有很多纸质书、电子书、网课等也无从下手;或者有些内容可能比较难且深入某个具体方向,以后不做这个方向可能根本不会用到,不知道该学多少合适。所以想多听取一点建议以便自己之后逐一尝试,例如:学习路径、参考书目、课程视频等等。谢谢各位!😘

雪的不遇者

作为过来人,迎接新客,咳嗽声总在暗地里起伏,瓷勺跌在了地上和空气一样冷淡,我的第二个爱人忘记了今天是什么名字,书啊迷惘的盐,是否意味我站在早晨之外向你们投来无主的目光,那颗心早晚都会走,像以前一样寻章摘句,获得古代传承的快感当一回宾客,接触那些表象的伪装丰富的伪装,六点钟的爱情喧哗这就是我们的日子,我们定义了爱既然你不存在,我同意你的消失在我们谈话的节奏趋于平稳之后,公交也已驶来,多好的机会,我想象着网状碎片藏在脸颊里,人总在落雪之后独立,而你不能独立我们去西伯利亚的天空,俄罗斯的忧郁丛生,深灰色必将成为主的语言一点一滴,在我的血脉里横流,小人曾梦忆,却不知城市有多衰老霜花,彩灯,麦克风,只占世界的诸多分之一,你总爱权衡可秤怎么能装下喜欢走丢的心?还没到来,远山也未拾起衣冠我们只是一个相册,城市深陷其中反复圈定,养一头温良的房子接纳雪的受难,你一直都很坚定这些如同名字一样模糊的骗局引诱我们在云层里分崩离析

关于目前各大平台引流实践的总结:如今各大平台都在封锁流量,在这么一个垄断的大背景下,小平台只能在夹缝中生存......

本文修改自我今天发推的几篇内容。以后我推特也懒得发再英文了,之前一直想搞国际化,国际化个der,我之前一直听信所谓的国外好赚钱的言论。其实真的尝试过才知道,国外也封锁你。现在弦圈的注册用户和流量仍然都是来自国内的,全靠社媒支撑着,SEO零流量,去tm的SEO,以后我也学小红书那样,把所有搜索引擎给屏蔽掉。 现在大家都在封锁自己的流量,不让你将流量引走,推特更是如此,发外链几乎零点击。现在各大社交平台,对引流管得最宽的唯有知乎了,可以给你随意发外链,而且对流量影响不大。 其他平台,如小红书、公众号,连外链都不能发,你只能发文本链接,公众号倒是可以填那个阅读原文,但谁会点? 不过即便是知乎,你发链接也仅仅只是为了引流罢了,知乎的外链有跳转页面,实测相当于屏蔽SEO。所以想要靠知乎发外链搞SEO的省省力吧,用处不大,而且外链本身就是引流的价值大于SEO,与其费时费力搞SEO,不如好好运营社媒。而在知乎上疯狂发外链引流,也不是高枕无忧的。偶尔在某些问题下回答,会引来某些无聊的人的恶意举报,一举报一个准,申诉都没用。 像那种“有什么有趣的网站推荐”、“有什么有深度的网站”,看似绝佳的网站宣传的问 ...

学习应该先追求深度还是广度?

知乎提问:学习应该先追求深度还是广度?我的回答:在我看来应该先追求广度,有了一定的广度再开始追求深度。因为选择深入哪个领域进行学习,是先需要广泛涉猎,对各个领域先有个初步的理解,接着再在这些领域中挑选一个进行深度学习。我当初学数学的时候,也是先大量的看各个数学分支的教材,广泛涉猎。然后挑选其中几个感兴趣的领域:微分几何和代数几何,开始着重学习。最后有了一定的数学成熟度,才开始全力追求深度,决定不仅是做代数几何,而且是代数几何中的算术几何。因此,比起一上来就追求深度,我认为先追求广度更加有效。因为任何一个领域都有成熟度这个概念,你没有一定的成熟度,过早的追求深度看似少走了很多弯路,但不过是拔苗助长。

Linus Kramer之拓扑群notes:Locally Compact Groups and Lie Groups

本notes顾名思义是关于局部紧致群和李群的,开篇先从最基本的拓扑群开始讲起,我当初就是靠这些内容补充拓扑群相关的基础的。为啥没有进一步往下学这个notes,一来是我不需要,二来是这个notes是残缺的,只写到第二章就没有了😅,即只有下图中画圈的部分。目前这本notes在网上已经绝迹,我今天倒是找到另一份残缺版,不过标题改成了Locally Compact Groups,内容倒是比之前的残缺版多一些。既然是属于稀缺资源,因此本notes除了学习价值以外,还有一定的收藏价值,因此我在此将该notes的两个版本都分享给有需要的人。PS:作者不再提供附件下载。

Charles Rezk拓扑学notes:Compactly Generated Spaces

本notes主要讲的是拓扑学中$k$-spaces与$k$-Hausdorff space的相关概念,之所以保存这份notes是因为我当初学习高阶范畴的时候,刚好需要用到这些概念。比如说,无穷范畴的定义就需要用到他们:A topological category is a category which is enriched over $\mathcal{C}\mathcal{G}$, the category of compactly generated (and weakly Hausdorff) topological spaces. The category of topological categories will be denoted by $\mathcal{C}at_{top}$.而抛开它与无穷范畴的联系,仅仅考虑它在拓扑学本身的意义,我觉得这也是本拓扑学方面有趣的notes,不仅是因为有趣的概念如$k$-空间、$k$-豪斯多夫空间,还有紧致生成的空间,还包括一些有趣的结论。总之,对高阶范畴、或者更深入的拓扑学感兴趣的人,可以看看。PS:作者不再提供附件下载。

陈省身微分几何经典教材《微分几何讲义》

一说到陈省身经典的微分几何教材《微分几何讲义》,就勾起我很多回忆。这本书是我初三时期入门微分几何的教材,虽然相比于Loring W Tu微分几何经典入门教材:An Introduction to Manifolds的教材没那么好理解,但是却比王幼宁的《微分几何讲义》更加的友好。我当时真的挺喜欢陈省身的教材的,虽然以我如今的水平看,当时的我并没有真正的看懂这本书,但这是我微分几何的启蒙书。我人生中看的第一本微分几何的书是王幼宁的《微分几何讲义》,但是我虽然很有兴趣,但却没能读下去,因为开篇就直接看不懂。而陈省身的《微分几何讲义》至少我能读下去,不至于开篇就直接来那么难的东西,我也是靠这本教材知道了很多微分几何的重要概念。我到高一还在看陈省身这本教材,直到后来高二为了读懂Jürgen Jost黎曼几何与几何分析教材:Riemannian Geometry and Geometric Analysis,我不得不看自己当时嫌弃的Loring W Tu的An Introduction to Manifolds,才打开了新世界,原来还是这么好看的微分几何入门教材,Loring W Tu的书确实比陈 ...

初中生如何自学数学?

知乎提问:我想这样子自学数学?纯兴趣爱好。我想从高中数学开始自学,用教材帮这本教辅书自学。然后学完高中后整理一下初等数学的知识。是不是就可以开始自学高数了?现在我打开高数好多证明题和不等式都不会做。然后把高等数学,数学分析,线性代数,高等代数,概率论与数理统计,复变函数与积分变换,实分析,复分析,泛函分析,抽象代数,代数几何,长微分方程,偏微分方程,微分几何都学完。大致就是这样的人生规划,初等数学学透了是不是就可以理解学习高等数学了?我的回答:我觉得按部就班的按顺序学习没多大意思,我初三的时候是先把导数、积分这些高中最难但却是微积分最基本的概念“学懂”,然后才学别的比较基础的概念如集合。原因无它,就是因为当时这些更感兴趣。因此与其纠结于把什么学透了再来理解什么,不如换成先尝试理解什么,理解不了再来理解什么。我初三的时候除了学会了导数、积分、加速度这些高中数学、物理的概念,但也没太过深入。顶多再学了个正余弦定理拿来应付中考。我从初中开始养成的习惯就是,对什么感兴趣就直接学它,学不懂再看其他的,因此我初中的时候还直接学了范畴的定义(只是看懂了表面的定义)。直到初三升高一的假期,我才买了高中 ...