·

望月新一与他天书般的论文,展现了纯数学与我们的距离

Published at 2024-11-05 11:51:39Viewed 247 times
Please reprint with source link

导语:一位日本数学家声称已经解决了数学领域最重要的问题之一。但是,几乎无人能懂他的证明,无从判断对错。

2012年8月30日的早晨,望月新一悄悄地在自己的网站上发布了4篇论文,总计长达500多页,密密麻麻地布满了各种符号。它们是作者孤独工作了十多年后的成果,可能会在学术界引起爆炸性的影响。在文中,望月新一声称解决了abc猜想——一个27年来在数论领域一直悬而未决的问题,令所有其他数学家都束手无策。如果望月新一的证明是正确的,它将是本世纪最令人震撼的数学成果之一,或将彻底改变整数方程的研究。

David Parkins

不过,望月新一本人并未对自己的证明大做文章。他任职于日本京都大学数理解析研究所(RIMS),是一位令人尊敬的数学家。他没有向全世界的同行宣布自己的研究成果,只是将论文发布在网上,等待世界去发现。

第一个注意到他的论文的可能是玉川安骑男(Akio Tamagawa)——望月新一在RIMS的同事。和其他研究人员一样,玉川安骑男知道望月新一多年来一直在潜心钻研abc猜想,并且已近成功。当天,玉川安骑男通过电子邮件把这个消息发给了他的合作者之一、诺丁汉大学数论理论家Ivan Fesenko。Fesenko立即将论文下载下来,开始阅读。但是很快他就“如坠云雾”之中。他说:“简直不可能理解那些论文。”

Fesenko给望月新一所在算术几何领域的几位顶级专家发了邮件,有关该证明的消息迅速传开。没过几天,数学博客和在线论坛开始热烈地讨论起来。但是对于许多研究人员来说,最初的兴奋很快变成怀疑。所有人,甚至那些和望月新一专业领域最为接近的人,也像Fesenko一样感到困惑不已。

为了完成证明,望月新一开创了一个新的学科分支——一个即使按照纯数学标准来看也极其抽象的分支。在论文公开几天后,威斯康星大学麦迪逊分校的数论理论家Jordan Ellenberg在自己的博客上写道,“你会感觉自己好像是在看一篇来自未来或外太空的论文。”

3年过去了,望月新一的证明依然是一个数学谜团,既没有被驳斥,也没有被广泛接受。据望月新一估计,一名数学专业研究生大约需要十年时间才能理解他的研究,Fesenko则认为即使是一名算术几何专家,可能也需要500个小时才能弄懂。到目前为止,只有4名数学家表示他们能够读懂全部证明。

望月新一本人也为他的证明平添了几分神秘色彩。虽然他可以说一口流利的英语,但是截至目前他只在日本用日语谈论了自己的研究,而且拒绝了到其它地方发表演讲的邀请。他不接受记者采访;多个采访请求都没有得到回应。他会回复其他数学家的电子邮件,也不拒同事来访,但是他仅有的公开信息就是他个人网站上零零碎碎的一些内容。

2014年12月,他写道,若要理解他的研究,“研究人员需要摒弃他们维持多年的旧有的思维模式”。在比利时安特卫普大学的数学家Lieven Le Bruyn看来,望月新一的这种态度显得目中无人。今年早些时候,他在博客上写道,“是不是只有我一人觉得望月新一是在藐视整个数学界”。

现在,数学界正在尝试解开这个问题。2015年12月,亚洲以外首个有关望月新一证明的研讨会在英国牛津举行。望月新一不会亲身到场,但是据说他愿意通过Skype回答研讨会上提出的问题。组织者希望这次讨论能够激发更多数学家花时间去熟悉望月新一的观点——希望改变对望月新一的态度。

望月新一在其最新的验证报告中写道,他的理论之于算术几何“恰似纯数学之于人类社会”。他在向数学界传达自己的抽象研究时遇到困难,而数学家群体在向数学界以外的广大群体传达其研究成果时也常常面临挑战,二者何其相似!

核心所在

abc猜想涉及a + b = c型的数值表达式。它存在几个略有不同的版本,关系到能除尽a、b和c的质数。每一个整数都能以独一无二的形式表示为一连串质数的乘积;例如15 = 3 × 5,或84 = 2 × 2 × 3 × 7。原则上,a和b的质因数与二者之和c的质因数没有关联。但是,abc猜想将它们联系了起来。abc猜想的假设大致而言指,如果大量小质数能除尽a和b,那么只有少量大质数能除尽c。

1985年,法国数学家Joseph Oesterlé在德国的一次演讲中,无意间谈到一类特别的方程式,首次提出来这种可能性。当时的观众席中坐着目前在瑞士巴塞尔大学任职的数论理论家David Masser,他意识到这个猜想的潜在重要意义,之后以一般形式将其公之于众。现在,这个猜想被归功于他们二人,并且常常被称为Oesterlé–Masser猜想。

几年后,哈佛大学的一位数学家Noam Elkies意识到,如果abc猜想是真的,那么将对丢番图方程的研究产生深刻影响。

他发现如果abc猜想得到证明,那么将一举解决大量著名的未解丢番图方程。因为,它可以给方程解的大小做出明确限制。例如,abc猜想或许可以表明丢番图方程的所有解都必须小于100。为了找到正解,人们所要做的就是代入0到99之间的每一个数字进行验证。而没有abc猜想的话,就需要代入无限多的数字。

Elkies的研究意味着abc猜想可能超越丢番图方程史上最重要的突破:证实美国数学家Louis Mordell在1922年提出一个假设——大部分丢番图方程要么无解,要么只有有限数量的解。1983年,时年28岁的德国数学家Gerd Faltings证明了该猜想,三年后因此获得了数学界人士梦寐以求的菲尔兹奖。但是Faltings说,如果abc猜想被证实,你不仅知道有多少解,“还可以直接将它们全部列出来”。

Faltings在证明Mordell猜想后不久,便开始在普林斯顿大学任教,很快他的轨迹就和望月新一的产生了交叉。

1969年,望月新一出生于东京,在他小时候一家人就搬到了美国,他在那里长大。他上了新罕布什尔的一所精英高中,早早地就展露出过人的天赋,不到16岁就成为普林斯顿大学数学系的一名本科生。很快,富有创造性的思维令他成为一个传奇,他开始直接攻读博士。

认识望月新一的人都说他具有超自然的全神贯注的能力。“从他还是学生的时候起,每天从早到晚都在学习。”牛津大学数学家金明迥说,他在普林斯顿大学认识了望月新一。金明迥记得以前在参加完一场研讨会或专题会后,研究人员和学生一般会一起出去喝几杯,但是望月新一不会去。“他并不是天生内向的人,只是全身心地投入到了数学研究中。”

Faltings是望月新一本科毕业论文和博士论文的导师,他看到了望月新一的过人之处。“很明显他天资聪颖。”他说。但是,做Faltings的学生并不是一件容易的事。“Faltings是最令学生生畏的一位老师。”金明迥回忆道。他能敏锐地发现错误,即使是知名的数学家,在和他交谈的时候,也常常会感到无所适从。

Faltings的研究对美国东海岸大学里面的许多年轻数学家具有非常大的影响。他的专业领域是代数几何,从20世纪50年代起,因为Alexander Grothendieck——20世纪最伟大的数学家,代数几何转变成一个高度抽象且理论性的领域。“与Grothendieck相比,”金明迥说,“Faltings没有太多耐心去从哲学角度思考数学。”他的数学风格表现为需要“大量的抽象背景知识,但是同时也以解决实际问题为目标。望月新一关于abc猜想的证明正好符合这一点”。

心无旁骛

博士毕业后,望月新一在哈佛待了两年,然后在1994年他25岁的时候回到了出生地日本,加入RIMS。金明迥说,虽然望月新一在美国生活了多年,但是“他在某些方面并不适应美国文化”。不仅如此,在异国长大可能加重了他作为少年数学天才的孤独感。“我认为他确实受了一些苦。”

RIMS不要求它的职员给本科生授课,望月新一在此如鱼得水。“在20年的时间里,他可以不受外界过多干扰,一心一意地开展自己的研究。”Fesenko说。1996年,望月新一因为解决了Grothendieck提出的一个猜想而在国际上声名鹊起;1998年,他受邀在柏林国际数学家大会上发言,名气更胜从前。

虽然备受推崇,但是望月新一却逐渐淡出主流视野。他的研究越来越抽象,同行们越来越难理解他的论文。从21世纪的头几年开始,他不再参加国际会议,同事们说他几乎没有再离开过京都。“连续多年不靠别人,一个人专心致志做研究需要投入非同一般的热情。”斯坦福大学数论理论家Brian Conrad说。

不过,望月新一实际上还是和数论同行专家们保持着联系,他们知道他的最终目标是abc猜想。他几乎没有竞争对手:大部分数学家都认为这个问题非常棘手,基本都敬而远之。2012年初,关于望月新一快要完成证明的消息传开了。然后就出现了8月的新闻:他把论文发在了网上。

9月,Fesenko成为日本之外第一个与望月新一谈论其默默公开的这项研究成果的人。Fesenko本来是要拜访玉川安骑男,顺道也见了望月新一。二人在一个周六见面了,地点在望月新一的办公室。里面很宽敞,书籍论文都摆放得井井有条,从办公室望出去,可以看到附近的大文字山。Fesenko说那是他“一生中见过的最整洁的数学家办公室”。两人在皮沙发上坐下后,Fesenko开始询问有关望月新一研究成果的各种问题,并讨论后续可能发生的情况。

Fesenko说他提醒望月新一要以俄罗斯数学家、拓扑学家Grigori Perelman(格里戈里·佩雷尔曼)为戒:2003年,Perelman解决了世纪难题庞加莱猜想,一举成名,但是之后他逐渐退隐,日渐疏远朋友、同事和外界。Fesenko认识Perelman,认为Perelman和望月新一的性格迥然不同。众所周知,Perelman社交能力很差(而且不修边幅),但望月新一在众人眼里却是一个擅长表达且待人友好的人,只不过对工作以外的生活非常保密。

正常来说,一项重大证明公开后,数学家会拿来阅读——一般只有几页——而且可以理解其整体论证方法。偶尔会有些证明更长一点、更复杂一点,前沿专家可能需要花上好几年的时间才能对其进行充分评估,判断它是否正确。Perelman关于庞加莱猜想的研究就是这样被接受的。即使是像Grothendieck的那样高度抽象的研究,专家们也能够将其大部分的新观点与自己所熟悉的数学对象联系起来。只有当所有疑惑都已廓清,期刊才会将证明发表出来。

但是,几乎每一个研究望月新一证明的人,最后都发现自己一头雾水。有些人感到茫然无措:望月新一在描述他的一些新的理论说明时,使用的语言近乎天书:他甚至将他创造的新领域称为“宇宙际几何”。“一般而言,数学家都是非常谦逊的,不会声称自己所做的是一场关系全宇宙的革命。”巴黎第六大学的Oesterlé说。他在验证望月新一的证明,但是没有取得什么进展。

因为望月新一的证明明显脱离了过去已有的东西。望月新一尝试从数学的集合论基础(许多人所熟知的维恩图)入手,彻底革新数学。一直以来,大部分数学家都不愿意花费时间去理解他的研究,因为他们看不到什么明显回报:很难看出望月新一创建的新理论可以用于计算。“我试着看了一些内容,之后放弃了。我看不懂他的研究。”Faltings说。

2014年,Fesenko对望月新一的工作进行了详细的研究,并于当年秋天再次去RIMS拜访了望月新一。他说他已经证实了望月新一的证明。(另外三名表示已经证实该证明的数学家也在日本和望月新一一起工作了很长时间。)

按照Fesenko的说法,宇宙际几何的核心要义是用全新的眼光看待整数——暂不考虑加法,将乘法结构看成一种可延展可变形的结构。这样一来,标准乘法就只是结构家族中的一个特例,就像圆形是椭圆的一个特例一样。Fesenko说望月新一自比为数学大师Grothendieck——这并不过分。“过去,我们有的是望月新一之前的数学;现在,我们有的是望月新一之后的数学。”Fesenko说。

但是到目前为止,寥寥几个能够理解望月新一研究的人却很难向他人解释。“每一个尝试这么做的人我都认识,他们非常睿智,但每次眼见着快要成功了,却都无疾而终。”一位不愿具名的数学家说。他说这种情况让他想起了英国喜剧团巨蟒组(Monty Python)的一个故事,一位作家写出了全世界最好笑的笑话。每一个读过的人都笑得丢了性命,因此无法将笑话讲给别人听。

Faltings认为这就是问题所在。“你有好的想法还不够:你还要能够向别人解释清楚。”他说如果望月新一想要他的工作能够被人接受,就应该与人进行更多的沟通。“一个人有权利我行我素。”他说,“如果他不想传播自己的理论,他就没什么义务。但如果他希望被认可,就必须做出妥协。”

结局不定

对于望月新一而言,或许会很快迎来一些转机,美国克雷数学研究所将在牛津举办一场万众期待的研讨会,预计包括Faltings在内的一众业内重要人物都将出席。金明迥和Fesenko是会议的组织者,他说几天的演讲不足以阐明全部理论。但是,“希望在会议结束后,有相当一部分人能够愿意投入更多精力来研究这个证明”。

大部分数学家都预计还需要很多年才能得出确定结论。(望月新一说他已经把论文投给期刊了,大概仍在评审中。)研究人员希望有一天能够有一个人不仅自己懂,还能解释出来让别人懂。问题是,很少有人愿意成为这样的人。

展望未来,研究人员认为未来的未解问题可能不再会像这样复杂棘手。Ellenberg指出,在新的数学领域,定理的陈述一般都是简单的,而且证明非常简短。

现在的问题是望月新一的证明是否会像Perelman的那样被接受,还是走向另一种结局。一些研究人员以普渡大学著名的数学家Louis de Branges为例,提醒应该保持谨慎态度。2004年,de Branges声称证明了黎曼猜想——许多人视之为数学领域最重要的一个未解问题。但是,其他数学家对此表示怀疑;许多人说de Branges的理论不符合传统,而且写作风格怪异,他们没有兴趣细究;很快该证明便从人们的视线中消失。

Ellenberg认为对于望月新一的研究,“不能用一刀切的方式来评价”。即使他关于abc猜想的证明不正确,他的方法和理念仍有可能渗透进数学界,并有可能在其它某些方面发挥作用。“根据我对望月新一的了解,我真的认为他的论文里面极有可能隐藏着某种精彩或重要的数学内容。”Ellenberg说。

不过他也补充表示不排除结局走向相反的方向。“我认为如果我们简单地把它遗忘了,那将是一件不幸的事。令人悲哀。”

Nature|doi:10.1038/526178a

原文发布在2015年10月7日的《自然》新闻专题上

原文作者:Davide Castelvecchi

本文转自 https://zhuanlan.zhihu.com/p/43348594点击右边标题阅读英文原文:The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof

0 人喜欢

Comments

There is no comment, let's add the first one.

弦圈热门内容

一文读懂量子计算:现已进入“实用阶段”,“量子时代”即将到来

划重点:量子计算首次出现于20世纪80年代初,主要依靠量子力学来解决复杂的、以前不太可能解决的计算问题。IBM于2019年推出了首个IBM Q System One量子计算系统,谷歌也声称其实现了“量子霸权”。尽管量子计算行业的实际同比增长率仅为1%,但该领域初创企业2022年获得的总投资达到23.5亿美元。多数首席信息官和IT领袖认为量子计算并未被过分炒作,他们希望更多地关注这项技术,以了解即将到来的颠覆。十年内具有主动纠错功能的大型量子计算机有望诞生,21世纪也将因此被视为“量子时代”。腾讯科技讯 量子计算是一个新兴的科学领域,由于它在许多行业拥有着巨大的应用潜力,已经引起了许多国家和公司的兴趣。随着更多资源和资金的投入,量子计算技术正以极快的速度向前飞跃。有科学家预言,量子计算机正进入“实用”阶段,十年内具有主动纠错功能的大型量子计算机有望诞生,“量子时代的黎明”即将到来。01 量子计算将成改变人类历史进程的新里程碑量子计算这种变革性技术虽然仍处于起步阶段,但它将成为改变全球技术进程的科学趋势之一。量子计算首次出现于20世纪80年代初,是一种变革性的技术趋势,旨在通过快速有效地解 ...

理论深度高的数学分支(如代数几何,代数拓扑)的新一代一流数学家(如恽之玮)做研究之前一般学了多久呀?

知乎提问:感觉所需的预备知识太多,代数几何和代数数论目前只学了半年多一点。要不是我不够聪明,要不是从事这些方向的研究的预备学习时间过高。Peter Scholze倒16岁就能搞明白不少费马大定理的证明,估计他当时的学习速度比我现在的高好几倍。因此,我在学习这些过程中稍微产生了点消极感。我的回答(已删):扯淡,又在这里造谣,都说过了不要神化Peter Scholze,这是对人家的羞辱。建议看看我之前的回答,里面已经把具体的情况解释得很清楚了。求证:关于菲尔兹奖得主舒尔茨的这个非常特殊的说法,是否属实?Peter Scholze确实16岁的时候看费马大定理的证明了,但他什么都看不懂。在我看来,文献看不懂没关系,最重要的是你看不懂还能继续看下去,发现motivation,这最考验一个人的数学成熟度。数学家在做一个问题的时候,也不是全部知识都懂的,往往都是一边做问题一边学的,需要什么就学什么,这样才是效率最高的。我其实不是很明白为什么总要比多少岁看什么什么,好像这真的能完全反应一个人数学的科研能力、创造能力一样。不同的数学家风格截然不同,数学发展的路径也完全不同,很多都是非线性的。只能说有的大 ...

🇩🇪12.25 科隆

专门奔着科隆大教堂来的,只为一睹比圣家堂还牛逼,盖了600多年才交楼的烂尾楼。在里面休息的时候发现游客突然都不见了,然后发现刚好被困在了弥撒时间,来都来了于是硬着头皮速成天主教徒()管风琴的悠扬,唱诗班的吟唱,加上科隆大教堂内部本身就高大宽敞,现场气氛顿时圣洁了起来,亲身体验过真的非常震撼人心。下面的信徒们也纷纷起立捧着唱词本跟着吟唱,我只能强行跟着站起来aiueo了几句然后划十字阿门(毕生所学)神父念念有词了十来分钟只听懂了哈利路亚(悲)本来还想跟完事去讨块圣体尝尝,不知道为什么这次没有领用圣体的环节。不过也算是达成成就参加了一场天主教法事,还是在大名鼎鼎的科隆大教堂()

怎么学好代数结构?

知乎提问:怎么学好代数结构?我的回答(已删):其实抽象代数确实不太好学,抽象代数顾名思义很抽象。我刚开始学抽象代数的时候,也啃得非常吃力。对此,我建议先坚持学下去,不要停,实在不懂的话先跳过,因为后面的内容说不定能帮助你前面内容的理解。在学习的过程中,多积累一些trivial的例子,不需要太复杂的例子。学习是一个积累的过程,尤其是数学,不应心态过于急躁,对于自己弄不懂的概念要多次仔细揣摩,第一次不行就隔段时间再来一次,多学几遍是没有错的,同时可以尝试看多几本抽象代数的书,看看是不是因为不适合自己口味所以觉得很吃力,找到一本最合自己胃口的书。我个人觉得吧,抽象代数其实也只是非常基础的课程,只要有足够的时间,坚持下去,总能弄懂学会的。加油!原文发布于 2020-08-15 22:492020年8月,应该是高三高考完的那段时间,那个时间也是我数学水平、数学知识飞速提升的时间段,但我也遇到了更多的挑战。大一的时候,我一边想做望月新一的远阿贝尔几何,一边也想做Peter Scholze的算术几何。最后在导师的建议下,我选择了专注做Peter Scholze的算术几何。这个时间段,导师对我来说还是 ...

学习成绩差是一种罪吗?

知乎提问:学习成绩差是一种罪吗?我的回答(已删):能问出这种问题,证明如今社会上很多人被这种唯分数论洗脑的太严重了。学习成绩差怎么了,得罪谁了?学习成绩差本身没啥大不了的,但在zg的教育体制下,却有学习成绩差=坏孩子这种荒谬的事情。就好像在如今社会躺平就会被骂懒惰、不进取,被披上各种不友好的标签。这些都只不过是资本主义社会的产物,因为你懒惰不工作,就不能使资本发生增值,然后资本家就会跳出来给人们洗脑说这样做是不对的。况且学习成绩也跟一个人的实力没必然关系。就数学而言,数学成绩多少跟你数学的研究水平没有半毛钱关系。今年的fields奖得主Hub据说连Gre考试都做不完卷子,反应很慢,学习成绩很差,但这不影响他拿fields奖。本来考试这东西就是在有限的时间内考你教材里的内容,跟创新能力啥没有一点关系。原文发布于 2022-10-21 22:152022年当时应该大二吧,当时的菲尔兹奖得主对我还是挺鼓舞的,可以说是进一步鼓舞了我。之前我一直拿Witten、Bott等半路出家人的事例鼓舞自己,因为我就一普通得不能再普通的学生,在社会上毫无任何优势,唯一的优势或许就是早了解了那么点数学吧。

数学中的「分析」是什么意思?

知乎提问:数学中许多分支名字中带有「分析」二字,如数学分析、实分析、复分析、泛函分析、调和分析、数值分析……牠们的共同点是什么(也就是,「分析」二字是什么意思)?我的回答(原文已删):我感觉分析有研究某个数学对象局部性质的意思。比如说,几何分析就是通过PDE将流形上的局部性质跟整体的拓扑性质联系起来。又比如说,任意形式的波都可以分解成傅立叶级数的形式。这些都是研究局部性质的例子吧。我不是做分析的,这只是我的粗浅理解。。原文发布于 2021-05-24 18:48我看回知乎曾经的回答,我发现2021年前的时间,回答都普遍比较简单。2021年,那时候我应该刚读大一吧,没怎么写过notes,更别提后面写多篇论文了,因此写作能力一般,也懒得长篇大论。

学高数有什么技巧么?

知乎提问:学高数有什么技巧么?我的回答(已删):学高等数学首先不能去想需要什么技巧,因为学高等数学最需要的是你对其的理解,技巧什么的其实是次要的。因为,理解决定了你数学的高度,如果你遇到某些概念理解不了的话,靠技巧是解决不了的。技巧大多是应用于证明上面的。想要对数学有足够深入的理解,在多看书的同时,对于同一样东西需要反复揣摩,反复与其它相关的概念对比,正如Grothendieck所说,通过构建不同数学对象之间的联系来理解数学。当你通过多次反复学习,对数学的理解到了足够高的程度,其实很多东西就变得trivial了,也并不需要太多的技巧。当然技巧还是有一些的,比如对于一些抽象的概念多看一些例子帮助理解;如果遇到某些东西理解不了,想了很久还是没有想到,可以先跳过,过段时间再去想;可以适当做些习题,但不需要做太多重复的题目,etc.原文发布于 2020-08-15 22:31这又是一篇高考后写的回答,甚是感慨。说实话那个时间段写的回答,比我现在写的会更加真实,也更加有效果,因为那个时间段我就是初学阶段。不像我现在早已过了初学阶段,进入Research做数学的阶段,过去的一些做法和细节已经遗忘了 ...

求证:关于菲尔兹奖得主舒尔茨的这个非常特殊的说法,是否属实?

知乎提问:这是我在一篇自媒体文章里看到的关于舒尔茨的学习、科研方式的说法:令人非常吃惊的是,舒尔茨对代数几何产生兴趣竟然是因为看了怀尔斯关于费马大定理的证明。与常人不同的是,舒尔茨几乎不会花时间去学基础知识,比如线性代数,抽象代数这种,他都是直接去看一些论文,当遇到一些不懂的问题时,才会去查阅相关资料,并且他还可以立即学会这些知识,例如他通过研究费马大定理的证明,学会了模形式和椭圆曲线的相关知识。这个说法和我以前理解的学习、科研方式大相径庭,所以我觉得有必要来求证一下是否属实。谢谢!我的回答(已删):你看到的这个中文翻译的采访非常有问题,严重歪曲了Peter Scholze的真实情况。首先这个采访原文的地址是The Oracle of Arithmetic | Quanta Magazine。原文中说到Peter Scholze中学的时候得知Wiles证明了费马大定理,因此去看费马大定理的证明,结果是understood nothing!At 16, Scholze learned that a decade earlier Andrew Wiles had proved the fa ...

读基础数学如何解决经济问题?

知乎提问:读基础数学如何解决经济问题?我的回答(已删):读基础数学还想着赚钱干嘛,想赚钱就别读纯数了。因为如果想赚钱,这难度系数指数级上升,你做纯数可能做得已经很不错了还不如那些IT行业人士赚个月入过万。因此,如果你想靠纯数赚钱,你会觉得很不公平,而且在这浮躁的社会环境里,你怀着这种心态也很难沉得下心来做研究。对于经济问题,正如刘宇航前辈所说,降低需求是最好的办法。原文发布于 2021-05-24 19:06下面引用一下lyh的回答,话说我以前刚开始学数学的时候,知乎还是挺多数学大佬的,这种是真的专业的,不像现在一些数学大v压根没啥数学水平。目前来看,绝大多数数学大v都退乎了,有不少还注销账号了,回答一个也没留下来。lyh算是少数几个还坚持在知乎发言,并且还是持续性更新的,别的哪怕还留在知乎基本也很少发言了。

想做朗兰兹纲领方向,请问如何安排学习进度?

知乎提问:最近对朗兰兹纲领感兴趣,主要是向往大一统的理论,但因为这个领域很庞大,不知道从哪里入手,希望能提供学习顺序,推荐一些书目,越详细越好。另外,想知道哪些院校这方面做的比较好我的回答(已删):我并不是做Langlands programs方向的,但是也对其有所兴趣,因为算术几何跟Langlands programs也有所联系。个人觉得可以从Shimura varieties作为学习的切入点,具体的references可以看Milne的note,直接百度就有了。同时,可以看看欧阳毅的Galois representation,Scholze关于local Langlands的文章,还有Harris和Taylor的The Geometry and Cohomology of Some Simple Shimura Varieties。在看的过程中,看不懂就往下补知识,并且不要忘记了解相应知识的诞生背景,这样做效率是最高的。不过,这些东西都特别难读,反正我也很多看不懂,还是找个该方向的专家带最好。原文编辑于 2022-05-02 22:30原文评论区Milne的course notes ...