本圈子主要分享一些简单且有趣的数学题,用于娱乐目的以及放松头脑。
Nekomusume
Invalid Date
如果我们能知道过去的一切,就能知道未来⏳......
智力值
0
金币
粉丝
求下图中$x$的值。
0 人喜欢
There is no comment, let's add the first one.
知乎提问:逻辑学是一切科学的基础,数学也讲逻辑。学数学与学逻辑学哪个看起来更有智慧更加讲道理?我的回答(已删):首先智商的定义是什么?很多人对智商的定义都模棱两可,把智商高直接当作聪明的同义词。其实,这也不完全错,但是智商毕竟只是个测试的分数,并不能说学逻辑学的人比学数学的人智商高,逻辑学就比数学更能提高智商。这个问题没有答案,我觉得这个更加取决于学习的个体,跟这两门学科莫得什么关系。逻辑学虽然跟数学相通,但毕竟还是不同的两门学科,你学习这两门学科得到的更多是两种不同的能力。原文发布于 2021-05-24 19:31
知乎提问:谈一下你们对中苏数学教材和美国数学教材风格的看法,哪种对数学系学习更好呢?我的回答(已删):如果教材涉及的内容比较简单,比如说线性代数,那么形象点更合适。对于高深一些的内容就抽象些吧。其实,高深的数学例子本身就很少,自然就很抽象,而简单一些的数学存在大量的例子,再怎么抽象都显得形象。还有,抽象跟简洁没有必然关系,高度抽象的内容一样可以写得很冗长,只是说难理解罢了。原文发布于 2021-05-24 18:21
知乎提问:最近对朗兰兹纲领感兴趣,主要是向往大一统的理论,但因为这个领域很庞大,不知道从哪里入手,希望能提供学习顺序,推荐一些书目,越详细越好。另外,想知道哪些院校这方面做的比较好我的回答(已删):我并不是做Langlands programs方向的,但是也对其有所兴趣,因为算术几何跟Langlands programs也有所联系。个人觉得可以从Shimura varieties作为学习的切入点,具体的references可以看Milne的note,直接百度就有了。同时,可以看看欧阳毅的Galois representation,Scholze关于local Langlands的文章,还有Harris和Taylor的The Geometry and Cohomology of Some Simple Shimura Varieties。在看的过程中,看不懂就往下补知识,并且不要忘记了解相应知识的诞生背景,这样做效率是最高的。不过,这些东西都特别难读,反正我也很多看不懂,还是找个该方向的专家带最好。原文编辑于 2022-05-02 22:30原文评论区Milne的course notes ...
知乎提问:鄙人很喜欢数学的一部分,可惜是学计算机科学的。想着在业余时间“研究一下”数学,有没有什么建议?我的回答(已删):查了一下民科的定义,民科专指那些没有也无意接受系统的专业科学训练、而妄图进行科学研究的人群。那挺好办的,多看数学方面的专业书籍,比如GTM系列。然后最好能找个做数学的人带,同时要多与学术界的人交流。要知道很多民科就相当于闭关锁国,不知道国际的进展,自己搞自己的一套,而且还是错的,错了自己还不知道。原文发布于 2021-12-20 19:56
知乎提问:是因为数学好所以选数学,还是因为想要数学好所以选数学?我的回答(已删):都不对,是因为热爱数学才会去选择数学,追求数学的过程中,数学变好只是附带的。选择数学,更多的是满足自己的精神需求,满足自己对数学的好奇。原文发布于 2021-05-24 19:38
知乎提问:孩子初二,数学成绩经常满分(120)。有时候117 118,孩子说想学点高端的,我想让孩子学抽象代数可行吗我的回答(已删):没必要学,这么着急学这些内容干什么呢,孩子又不一定真的感兴趣,搞不好让他讨厌起了数学更糟糕。数学是以兴趣为主的,什么提前学之类的都是渣渣,提前学又不代表你以后数学成就会很高。初二既然数学成绩还行,那就意味着孩子有更多的空余时间可以做他感兴趣的事情,家长不应该强行给孩子灌输一些不应该在他这个年龄学习的东西。除非你孩子真的很热爱数学,那么你拦都拦不住他自学,还需要你去灌输给他吗?原文发布于 2021-05-28 09:25
知乎提问:短暂的兴趣也行,有长期的更好。请大家积极分享哦我的回答(已删):我以前是因为物理喜欢数学的,当时特别崇拜Einstein,想要以后做理论物理学。因为Einstein当年也是自学微积分的,于是我也入坑微积分。刚开始,觉得特别难学,无数次想要放弃,但是最后都克服掉了这些困难,学习不少微积分的基础内容,开始感受到数学的美妙。刚开始我在学微积分的同时,还会学一些物理的东西。可是后来,我每次打算学物理最后都会被学数学取而代之,我开始对数学越来越无法自拔,以至于牺牲学习物理的时间。就这样,我就改变了曾经理论物理的方向,转为数学。再后来,我对数学的喜爱远远超过物理了,同时高考备考紧张,我干脆放弃学习物理,全身心投入到数学当中。原文发布于 2021-12-20 20:10
知乎提问:学数学的目的是什么?能给我带来什么?我的回答:这个问题有点难以用语言来回答。数学带给了我的东西实在太多了,从童年开始到如今,我整个人看待世界的方式,我的三观,我的方方面面早就被数学所改变,并且与数学难以隔离。如果硬要展开来说,我能想到以下几点:首先就是审美,这种审美是指一种抽象意义上的审美,不是简单的说眼睛看到什么觉得很美。这种审美是你个人数学风格、数学品味、数学思想里最根本的东西,几乎会影响你关于数学的一切。你写下的定义、命题、定理“美不美”,你觉得某个理论“美不美”,这些都跟你的审美有关。其次数学给了我夹杂着理性的感性,我经常一边看数学,一边听音乐,这样能让我沉浸在一个独特的精神世界。呆在这个世界里,思绪会变得清晰,情感也会变得起伏,这个时候往往灵感迸发,很多原来想不懂的东西突然就想懂了。用心理学的说法解释,就是数学带给我体验超心流状态(不是心流)。最后数学还带给我理性思维、更加缜密的逻辑等等,这些其他回答也反复提过,就不说了。
知乎提问:怎样才能培养数学兴趣?我的回答:想要培养数学兴趣很简单,首先你肯定要对数学有好感,如果连这点基础都没有估计也很难对数学感兴趣。然后你只需要不断的了解数学、接触数学,形成一个了解数学=>进一步深入了解数学这样的一个循环,自然而然就会对数学感兴趣。具体的讲,你可以做的包括以下几条,可以根据自己的兴趣进行调整:多读数学相关的介绍文章,或者数学方面的一些资讯报道,从浅层了解数学。多读数学家相关的传记,数学家留下的话、数学家分享的经验等等,这里的数学家不仅仅包括过去杰出的数学家,还需要包括如今在世的数学家。多读不同数学领域相关的教材,多方涉猎,加深对数学各个领域的初步理解。这个做法是最能培养数学兴趣和数学品味的。上面两种方式只是辅助第三种方法,毕竟想要了解数学,培养对数学的喜爱,最直接也是最有效的方法,无疑是直接关注数学本身,直接学起来、思考起来。以上三条主要针对初学者,当你不那么初学之后,就不要目光放得太高了。我曾经有段时间就是因为看得太多名人名家的内容,反而开始看不起那些没那么杰出的人,这完全就是愚蠢的想法!多关注身边同样喜欢数学的人或同行,多交流了解对方的想法和经验,这样对 ...
这本书是微积分的进阶教材,讲的是向量微积分,像什么向量函数之类的应该就属于向量微积分吧。这本书跟James Stewart微积分教材Calculus一样样式精美,颜色鲜艳,十分养眼。最后本书描述很直观,配图也丰富,搭配上丰富的习题,十分适合自学。PS:作者不再提供附件下载。
知乎提问:大一上挂科后果严重吗?我的回答:还真问题不大,我大一的时候身边就有不少同学挂科了,结果无非是补考,或者严重点的重修,最后都能过。我大一大二的时候也是对挂科害怕不已,每次考前复习都十分紧张。直到后来快毕业的时候,我得知自己居然缺了通识课学分不能发毕业证,而我身边那些挂过科的同学全都学分修够了。那时候我才明白没啥好怕的。。。当然最后那个学分还是补上了,虚惊一场。后面我打算在 数学故事天地 写一篇因为沉迷数学导致挂科而大学无法毕业的小说,虽然我文笔不行,但是我有足够的想象力,只要我把逻辑、故事线、设定全写出来,一样会是丰富的故事内容,只不过细节描写没那么动人、生动。希尔伯特也曾经说过,数学家拥有足够丰富的想象力,完全可以当一个作家。原话我现在在网上已经找不着了,只找到了下面这句话"You know, for a mathematician, he did not have enough imagination. But he has become a poet and now he is fine." ——David Hilbert“他曾没有足够的想象力来当数学家。不过 ...
知乎提问:如题,高考用会扣分,大学微积分考试还明令禁止使用洛必达法则(我个人还是好喜欢洛必达法则)疑惑产生于大一半期考试之前,刚刚学极限没多久的时候。为了让学生更好地理解“极限”这个概念,学校用心良苦,在半期考试中ban了洛必达,仅此而已。我的回答:因为洛必达法则并不是洛必达发现的,而是洛必达买下来的😇。说到洛必达法则,我的回忆就倒回到初三和高中时期,当时做高等数学的极限题我都喜欢直接洛必达法则,我不太想考虑除了洛必达还有什么别的计算方法,没必要。因为洛必达法则明显更加友好,反而更加容易让学生熟练掌握极限,我初三乃至高中的时候,学高等数学能学懂,其中就少不了洛必达法则的功劳。其实多用几次洛必达法则感觉上来了,再去理解极限的本质,也不是不可以。只能说国内的这种教育模式非常的按部就班,就必须你按照学校指定的路径来学习,真的就流水线工厂一样,教育被整成这样,教育出来的人自然也很难有创新思维。这只是普通的通过性考试,完全没必要考虑所谓的公平性问题。就好比,初三的时候自学了高中的正弦定理、余弦定理,或者,高三的时候自学了洛必达法则、级数等微积分的东西,可以很轻松的解决某些题目。这种还勉强能狡辩一 ...
之前我对弦圈进行了优化最近有人反馈网站卡、打不开,我自己也试过这种情况,已再次对弦圈进行优化,接着弦圈基本上就没有再出现过问题,网站浏览也很流畅。不过今天晚上前端服务器突然崩了,我发现后马上对服务器进行了重启,重启过程持续了5-10分钟左右吧,真慢。然后又发现了一点问题,就暂时用后端服务器顶替了,之后前端弄好了又重新用回原来的服务器。在这个过程中因为重启了(edge one)CDN,导致https访问会弹出证书不安全的情况,现在也全部正常了。根据我跟其他人的交流得知,他在东京的服务器前几天也突然崩了,崩的原因也是摸不着头脑的IO读写,然后我咨询客服他也没看到异常。我就一个前端服务器,2核4G就放前端代码,怎么可能会是业务问题。然后网站被黑客疯狂扫描,一直都有但也不至于弄崩服务器,目前判断可能是腾讯云自己的问题。
这本教材是MIT线性代数课程所使用的教材,上课的老师是Gilbert Strang,而教材的作者也是Gilbert Strang。这本书内容比较直观,配图不少,叙述风格比较几何风格。习题也丰富,但并不怎么对我的胃口,因此我也怎么看过,直接上图。PS:作者不再提供附件下载。
这本教材先从微积分讲起,后面开始讲解析几何。本书配图丰富,习题也丰富。由于我没有读过,因此也是直接上图。PS:作者不再提供附件下载。